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Im Rahmen dieses Abschlussberichts werden die Arbeiten zusammengefasst, die von 
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Mit diesem Dokument werden die im Rahmen von ThermAc von KIT-INE und 

Unterauftragnehmern durchgeführten Arbeiten dokumentiert und kommuniziert. Nach 

einer allgemeinen deutschsprachigen Zusammenfassung der wesentlichen 

Projektergebnisse werden die jeweiligen Arbeiten einzeln und in englischer Sprache 

dargestellt sind. Die von den Unterauftragnehmern von KIT-INE separat erstellten 

eigenständigen Teilberichte werden ebenfalls dargestellt.  

 

Die Arbeiten in ThermAc wurden in einer ersten Projektphase mit dem Akronym 

„ThermAc3“ und einer folgenden zweijährigen Verlängerungsphase durchgeführt. In 

diesem Dokument werden die beiden Projektphasen zusammenfassend mit ThermAc 

bezeichnet. 

Das Gesamtziel des Projekts ThermAc war die Erweiterung des Kenntnisstands und 

der thermodynamischen Datenbasis für Actiniden, langlebige Spaltprodukte und 

Matrixelemente mit Relevanz für Langzeitsicherheitsanalysen zur Endlagerung 

hochradioaktiver wärmeproduzierender nuklearer Abfälle. Die Arbeiten von KIT-INE 

beinhalten neue umfassende experimentelle Arbeiten sowie die Anwendung von 

Schätzmethoden für thermodynamische Daten. Die Arbeiten werden von KIT-INE 

selbst, sowie den Unterauftragnehmern von KIT-INE (GRS, Amphos21 und PSI-LES) 

durchgeführt. Aufgrund der starken Beteiligung junger Wissenschaftler/innen stellen die 

Arbeiten einen relevanten Beitrag zum Kompetenzerhalt und -erwerb auf dem Gebiet 

der Nuklearen Sicherheits- und Entsorgungsforschung, bzw. auf dem Gebiet der 

Actiniden- und Radionuklidchemie dar. KIT-INE hat als Koordinator von ThermAc, 

verschiedene Beiträge zur Dissemination des Verbundprojekts geleistet, z.B. im 

Rahmen der Organisation des internationalen „Workshop on High Temperature 

Aqueous Chemistry HiTAC (III)“ (27.6.2019, Karlsruhe) welcher zugleich den 

Abschlussworkshop des Verbundprojekts ThermAc darstellte.  
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Kurzzusammenfassung der gesamten Arbeiten und Ergebnisse 

 

Die Arbeiten von KIT-INE und Unterauftragnehmern innerhalb von ThermAc 

ermöglichten eine signifikante Verbesserung des Kenntnisstandes zur Actinidenchemie 

bei höheren Temperaturen. Es wurden neue umfassende experimentelle Studien zur 

Löslichkeit und Speziation von Radionukliden durchgeführt, aus denen neue 

chemische Modelle (für wässrige und feste Phasen) und thermodynamische Daten 

abgeleitet werden konnten. Die experimentellen Arbeiten wurden mit Arbeiten zur 

systematischen Abschätzung thermodynamischer Daten kombiniert. Hierdurch wird für 

die untersuchten Systeme erstmalig die spezifische Anwendung von Schätzmethoden 

für höhere Temperaturen und deren gezielte Validierung ermöglicht. Zudem wurden 

unterschiedliche Arbeiten durchgeführt um ein verbessertes Prozessverständnis, etwa 

zu Redoxprozessen und Festphasentransformationen als Funktion der Temperatur, zu 

erhalten. Die experimentellen Arbeiten mit Radionukliden wurden im Kontrollbericht 

des KIT-INE durchgeführt, die experimentellen Arbeiten zu den Fe-Systemen wurden 

in den Laboren der GRS Braunschweig durchgeführt. Die Entwicklung und Anwendung 

von Schätzmethoden für thermodynamische Daten fokussierte auf die isocoulombische 

Methode bzw. Entropie/Enthalpie Schätzungen und wurde in Zusammenarbeit mit 

erfahrenen internationalen Partnern, PSI-LES (Schweiz) und Amphos21 (Spanien) 

ermöglicht. 

Das Hauptergebnis der Arbeiten von KIT-INE und Unterauftragnehmern innerhalb von 

ThermAc liegt in der kritischen Analyse, Bewertung und Quantifizierung von 

grundlegenden Prozessen der wässrigen Chemie für Actinidensysteme. Es existiert 

eine generelle Tendenz zu zunehmender Komplexbildung in Lösung mit höheren 

Temperaturen. Des Weiteren tritt mit steigenden Temperaturen die Tendenz zur 

Ausbildung thermodynamisch stabilerer, d.h. weniger löslicher, Festphasen zutage. Für 

viele Systeme wird dementsprechend die Löslichkeit, also die Summe aus 

Festphasenstabilität und Komplexbildung in Lösung, bei Raumtemperatur und höheren 

Temperaturen zumindest in erster Näherung vergleichbar sein. In Einzelfällen kann 

jedoch auch ein unterschiedliches Verhalten nachgewiesen werden. Die im Rahmen 

von ThermAc angewendeten Schätzmethoden haben sich als wertvolle Werkzeuge für 

die Vorhersage von Temperatureinflüssen auf die betrachteten Gleichgewichts-

prozesse erwiesen. Allerdings können sie nicht allgemein im Sinne eines „generellen 

vereinfachten Ansatzes“ für die Abschätzung von thermodynamischen Daten 
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verwendet werden, da in vielen Systemen spezifische Effekte die Prozesse steuern. 

Die Anwendung der Schätzmethoden kann lediglich für einzelne Systeme nach 

detaillierter Analyse der Eingangsparameter empfohlen werden und sollte auch dann 

zumindest stichpunktartig durch experimentelle Befunde validiert werden. Generell 

besteht auch nach Ende des Verbundprojekts ThermAc die Notwendigkeit, neue 

experimentelle Studien zu ausgewählten Systemen bei höheren Temperaturen 

durchzuführen, z.B. zur Generierung von Daten bei höheren Temperaturen als Basis 

für Schätzmethoden oder zur Identifizierung von bisher nicht bekannten 

Festphasentransformationen bzw. Lösungsspezies. Der verbesserte Kenntnisstand zu 

Löslichkeit und Speziation von ausgewählten Radionukliden bei höheren Temperaturen 

gibt einen wesentlichen Input für mögliche nachfolgende Forschungsaktivitäten mit 

dem Fokus auf Redoxprozesse und Radionuklidrückhaltung durch Sorption bei 

erhöhten Temperaturen. 

Das übergeordnete Ziel der Nachwuchsförderung auf dem Gebiet der Actinidenchemie 

und der Endlagersicherheitsforschung konnte durch die Beteiligung von vier 

Nachwuchswissenschaftler/innen am KIT-INE erreicht werden. 

Nachfolgend werden die im Rahmen der Arbeiten von KIT-INE und Unterauftrag-

nehmern gewonnenen Ergebnisse innerhalb von ThermAc zusammengefasst.  

 

Institut für Nukleare Entsorgung, Karlsruhe Institut für Technologie (KIT-INE) 

Von KIT-INE wurde der Einfluss von Temperatur auf die Löslichkeit und Hydrolyse von 

U(VI) in verdünnten bis konzentrierten NaCl-Lösungen untersucht. Die Arbeit 

ermöglicht eine systematische Charakterisierung der Festphasen, welche die U(VI)-

Löslichkeit bei erhöhten Temperaturen bestimmen. Für die Systeme wurden 

umfassende chemische und thermodynamische Modelle entwickelt, welche das 

Verhalten von wässrigen U(VI)-Spezies und der relevanten U(VI)-Festphasen 

quantitativ beschreiben. Es wurden Publikationen zu den Arbeiten von Endrizzi et al. 

„Solubility and hydrolysis of U(VI) in 0.5 mol/kg NaCl solutions at T = 22 and 80 °C” 

bzw. “Thermodynamic description of U(VI) solubility and hydrolysis in dilute to 

concentrated NaCl solutions at T = 25, 55 and 80 °C” erstellt. 
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Die Löslichkeit von ternären Festphasen des Typs Ca-U(VI)-CO3 wurde bei T = 22°C 

und 80°C untersucht. Es wurden Festphasentransformationen in diesem System bei 

höheren Temperaturen analysiert und thermodynamische Löslichkeitskonstanten für 

die Festphasen abgeleitet. Eine Publikation von Lee et al. „Solubility and stability of 

liebigite, Ca2UO2(CO3)3·10H2O(cr), in dilute to concentrated NaCl and NaClO4 solutions 

at T = 22–80 °C” wurde publiziert.  

Ein weiterer Schwerpunkt der Arbeiten von KIT-INE war die Analyse des Einflusses 

von Temperatur auf die Festphasenstabilität und Löslichkeit von Np(V) in alkalischen 

Lösungen. Insbesondere wurden detaillierte Charakterisierungen von relevanten 

löslichkeitsbestimmenden Festphasen durchgeführt und deren Stabilität untersucht. 

Die Arbeiten sollen im Rahmen eines weiteren Manuskripts von Fellhauer et al. 

„Transformation of Np(V) solid phase at elevated temperature” publiziert werden. Im 

Neptuniumsystem wurden in weiteren Arbeiten von KIT-INE der Einfluss der 

Temperatur auf Redoxphänomene untersucht. Insbesondere die Kinetik der Reduktion 

von Np(V) zu Np(IV) wurde in unterschiedlichen redoxaktiven Systemen analysiert. Die 

Arbeiten von Fellhauer bzw. Lee et al. „Redox Chemistry of Np(V)/Np(IV) in reducing 

aqueous solutions at T = 23 and 80°C” sollen ebenfalls in wissenschaftlichen 

Fachzeitschriften publiziert werden.  

Für dreiwertige Actiniden wurden Löslichkeitsstudien bei höheren Temperaturen 

anhand des chemischen Analogons Neodym realisiert. Wie bei den oben dargestellten 

U(VI)-Systemen konnten neue qualitative und quantitative Informationen zu den 

löslichkeitsbestimmenden Festphasen und den relevanten wässrigen Spezies 

abgeleitet werden. Der Vergleich mit Schätzmethoden, bzw. hierüber bestimmten 

thermodynamischen Daten, ermöglicht eine Einschätzung der Anwendung der 

Schätzmethoden.  

Innerhalb der Verlängerungsphase von ThermAc, untersuchte KIT-INE den Einfluss 

der Temperatur auf die Löslichkeit, Hydrolyse und Carbonatkomplexierung von Th(IV). 

Die Untersuchungen wurden in sauren bis hyperalkalischen pH-Bedingungen 

durchgeführt. Die Arbeiten wurden in die Masterarbeit von Christian Kiefer integriert 

und lieferten neue Informationen zu löslichkeitsbestimmenden Festphasen, 

insbesondere deren Partikelgröße und Hydratationsgrad in hydrolysedominierten 

Systemen und ausgewählten carbonathaltigen Lösungen.  
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Die Arbeiten der Unterauftragnehmer GRS, PSI-LES und Amphos21 zielen auf die 

Bestimmung von Redoxprozessen (Arbeiten im Fe-System) und die Anwendung und 

Bewertung verschiedener Schätzmethoden für thermodynamische Daten ab. Die 

Arbeiten und Ergebnisse der Unterauftragnehmer werden für diese Partner 

nachfolgend zusammengefasst und sind in dem Abschlussbericht von KIT-INE als 

ausführliche separate Teilberichte der jeweilige Unterauftragnehmer enthalten.  

 

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS): 

Die GRS arbeitete an der Verbesserung grundlegender Methoden zur Messung des 

Redoxpotentials in wässriger Lösung, insbesondere auch in Systemen mit hohen 

gelösten Salzkonzentrationen. Das Redoxpotential ist ein wesentlicher Parameter zur 

Einschätzung der Oxidationsstufenverteilung von verschiedenen endlagerrelevanten 

Radionukliden. Die experimentellen Arbeiten stützten sich primär auf detaillierte 

Analysen gezielt präparierter Lösungen von Fe(II)- und Fe(III)-Spezies. 

Auf Basis früherer Arbeiten wurde eine rechnerische Methode entwickelt, die es 

erlaubt, die primären potentiometrischen Messdaten in einem zweistufigen Verfahren 

zunächst in ein Konzentrationsverhältnis zweier redoxsensitiver Spezies und 

anschließend in ein alternatives Maß für den Redoxstatus in Lösung umzurechnen. Die 

Methode beruht auf der Auswertung systematischer Messungen des Redoxpotentials 

von Hexacyanoferrat(II)/ Hexacyanoferrat(III)-Mischungen in Lösungen der Salze NaCl 

und MgCl2. Die Methode steht für unterschiedliche weiterführende Anwendungen zu 

Verfügung. 

Ein Modell zur quantitativen Beschreibung der Komplexbildung von Fe2+ mit Chlorid in 

Lösungen von NaCl, KCl und MgCl2 fehlte bislang. Darum wurden UV-

spektrophotometrische Messungen durchgeführt, um die Komplexbildung in diesen 

Lösungen wie auch in LiCl-Lösungen bei 25 bis 80°C zu untersuchen. Für den 

Komplex FeCl+ wurde eine Bildungskonstante und Pitzer-Koeffizienten für die 

Wechselwirkung mit den Ionen Cl-, Na+, K+ und Mg2+ abgeleitet. Mit ihrer Hilfe ist es 

möglich, die beobachtete Speziation über den größten Teil der betrachteten 

Konzentrationen sehr gut zu beschreiben. 
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Paul Scherrer Institut (PSI-LES, Schweiz) 

Der Beitrag des PSI-LES zu den Arbeiten in ThermAc besteht in zwei komplementären 

Aktivitäten: (i) Evaluierung und systematische Anwendung der isocoulombischen 

Schätzmethode zur Extrapolation von Gleichgewichtskonstanten zu höheren 

Temperaturen, und (ii) die Revision und Erweiterung der existierenden frei verfügbaren 

PMATCHC Software für das Management von intern konsistenten thermodynamischen 

Datensätzen.  

Die Arbeiten zur Anwendung des isocoulombischen Schätzansatzes, war zum einen 

auf die Validierung verschiedener potentiell möglicher alternativer isocoulombischer 

Reaktionen zur Schätzung von log K°T ausgerichtet. Hier wurden insbesondere die 

wässrigen Komplexbildungsreaktionen von Lanthaniden und Actiniden betrachtet und 

vergleichende Analysen ermöglicht. Der isocoulombische Ansatz wurde zudem auf 

ausgewählte Feste-Lösungen Systeme (solid solutions) angewendet. Im Rahmen einer 

wissenschaftlichen Kooperation innerhalb von ThermAc von PSI-LES mit dem 

Projektpartner FZJ wurde das System (Ba,Sr,Ra)SO4(s)–H2O(l) analysiert.  

Die Arbeiten von PSI-LES nutzen zu einem wesentlichen Maß das von PSI-LES 

entwickelte frei verfügbare GEMS Softwarepaket und erweiterte dieses gezielt für die 

Arbeiten in ThermAc. Hierdurch steht dem Projekt ein neues Tool zur Modellierung von 

Prozessen der Radionuklidchemie bei höheren Temperaturen zu Verfügung. Ein 

wichtiger Erfolg war hier die Entwicklung von ThermoEcos, einer integrierten Software 

zur Verwaltung, Abschätzung und Berechnung von thermodynamischen Daten als 

Funktion von Druck und Temperatur. Hierin wurde die C++ Bibliothek ThermoFun für 

die Korrektur von Temperatureinflüssen auf thermodynamische Daten, das ThermoHub 

Datenpaket zur Speicherung von thermodynamischen Daten, und der ThermoMatch 

Code zur Verwaltung der thermodynamischen Daten und zur Erzeugung von 

entsprechenden digitalen Ausgabefiles integriert.  

 

Amphos21 Consulting (Spanien) 

Amphos21 arbeitete an der Evaluierung von verschiedenen Schätzmethoden mit dem 

Ziel die verfügbaren thermodynamischen Daten für Radionuklide in aquatischen 

Systemen im Temperaturbereich höher als 25°C deutlich zu verbessern. Der Fokus der 
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Arbeiten liegt in der kritischen Anwendung und nachfolgenden spezifischen 

Verifizierung verschiedener potentiell geeigneter Schätzmethoden. Basierend auf den 

hiermit geschätzten thermodynamischen Daten konnten Löslichkeitsgrenzen oder 

Speziationsschemata für Radionuklide berechnet, und mit experimentellen Daten 

verglichen werden, welche in vielen Fällen von Partnern innerhalb des ThermAc 

Projekts gewonnen wurden. 

Die Arbeiten fokussierten auf wässrige Spezies bzw. Radionuklidkomplexe in Lösung, 

und potentielle löslichkeitsbestimmende Festphasen. Die Arbeiten zielten auf 

dreiwertige Lanthanide (als Analoga für dreiwertige Actiniden) und Curium(III) ab, und 

konnten zudem wichtige Informationen zu weiteren relevanten Actinidensystemen wie 

Np(V), U(VI) oder Th(IV) liefern. Neben der Hydrolyse, welche eine fundamentale 

Größe in allen wässrigen Systemen ist und als Basisinformation zur Einschätzung des 

Verhaltens insbesondere von Actiniden in englagerrelevanten Systemen zwingend 

erforderlich ist, wurden auch weitere relevante Liganden wie Chlorid, Sulfat, Carbonat 

oder Phosphat analysiert. Auch für diese zusätzlichen Liganden erfolgten Vergleiche 

mit experimentellen Daten des Kit-INE, aber auch mit Arbeiten von anderen 

Projektpartnern in ThermAc. Der betrachtete Temperaturbereich wurde auf bis zu 90°C 

eingegrenzt und auf wässrige Systeme bei niedrigen bis mittleren Ionenstärken 

fokussiert, für welche die zuverlässigsten Ergebnisse generiert werden können. Die 

Arbeiten beinhalten eine systematische Zusammenstellung verschiedener 

Schätzmethoden, wobei deren Referenzen, Angaben zur wissenschaftlichen Basis der 

Methode, prinzipielle Anwendbarkeit auf einzelne Systeme, die geschätzten Parameter 

und die wesentlichen grundlegenden Gleichungen zusammengestellt und kommentiert 

wurden. Zudem wurden Datentabellen für die geschätzten Systeme erstellt und den 

Projektpartnern zu Verfügung gestellt. Hier sind die abgeschätzten 

thermodynamischen Größen wie die Stabilitätskonstanten enthalten und auch die 

intern berechneten Enthalpiewerte angeben. Die in diesen Berechnungen verwendeten 

thermodynamischen Daten für den Referenzzustand und die jeweiligen Masterspezies 

werden ebenfalls angegeben.  
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Deutschsprachige Zusammenfassung  

 

Die Arbeiten von KIT-INE innerhalb von ThermAc ermöglichen ein verbessertes Verständnis von 

grundlegenden Aspekten der aquatischen Chemie ausgewählter Actiniden in den Oxidationsstufen +III, 

+IV, +V und +VI bei höheren Temperaturen. Der Fokus der Untersuchungen liegt auf den vier 

Hauptaspekten: Löslichkeit, Hydrolyse, Redoxverhalten und Carbonatkomplexierung. Dieses trägt zu 

einem verbesserten wissenschaftlichen Kenntnisstand der Actinidenchemie im Kontext der Endlagerung 

hochaktiver, wärmeentwickelnder radioaktiver Abfälle bei, und hat zudem potentielle Relevanz für 

andere Forschungsbereiche in denen eine quantitative Beschreibung der aquatischen Chemie von 

Metallen und Radionukliden bei höheren Temperaturen erforderlich ist. Hauptaugenmerk liegt auf 

(geo)chemischen Bedingungen und Systemen für welche relevante Datenlücken in den 

thermodynamischen Datenbasen identifiziert wurden, oder auf Themen für welche aktuell kontroverse 

Diskussionen in der wissenschaftlichen Fachöffentlichkeit anhängig sind. Die durchgeführten Arbeiten 

wurden im Kontrollbereich des KIT-INE durchgeführt, und nutzen die vorhandenen exzellenten 

analytisch/spektroskopischen Möglichkeiten insbesondere für die Untersuchung von Radionukliden. 

Eine Liste der innerhalb von ThermAc von KIT-INE erstellten Publikationen und Fachvorträgen bzw. 

Posterpräsentationen bei Konferenzen und Workshops ist am Ende dieses Teilberichts aufgeführt. 

  

Die Löslichkeit von Nd(III) wurde in 0.1 – 5.0 M NaCl Lösungen bei T = 25 – 80 °C im pHm-Bereich 

6.5–9 (mit pHm = –log [H+], [H+] in molalen Einheiten) untersucht. Die nach Abschluss der 

Löslichkeitsexperimente isolierten Neodym-Festphasen wurden detailliert mittels Pulver-XRD 

untersucht. Die initial eingesetzten Festphasen waren in allen untersuchten 0.1 und 0.5 M NaCl 

Probenlösungen stabil. Eine Festphasentransformation unter Ausbildung eines chloridhaltigen 

Nd(OH)2Cl(s) Bodenkörpers wurde beobachten, wenn Nd(OH)3(s) in 5 M NaCl Lösung bei pHm < 8 

equilibriert wurde. Die Konzentration von Nd(III) in Lösung war in diesem Fall deutlich niedriger als 

diejenige, die für Nd(OH)3(s) auf Basis aktueller thermodynamischer Daten und Modelle berechnet 

wird. Dieses stützt den Befund, dass Nd(OH)2Cl(s) die löslichkeitsbestimmende Festphase von Nd(III) 

in Lösungen mit [NaCl] = 5.6 m und pHm < 8 ist. Die bei erhöhten Temperaturen gewonnenen neuen 

Löslichkeitsdaten für Nd(OH)3(s) erlauben es nicht, ein thermodynamisches Modell (mit 

Enthalpiedaten) für dieses System abzuleiten. Die in den Untersuchungen gewonnenen Daten erlauben 

jedoch die qualitative Aussage, dass erhöhte Temperaturen nur einen vergleichsweise moderaten 

Einfluss auf die Löslichkeit von Nd(III) innerhalb der untersuchten experimentellen 

Rahmenbedingungen hat.  
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Der Temperatureinfluss auf Festphasen, Löslichkeit und Carbonatkomplexierung von Th(IV) 

wurde systematisch unter Ar-Schutzgasatmosphäre untersucht. Ausgangsmaterial in den 

Untersuchungen war jeweils eine frisch ausgefällte amorphe ThO2(am, hyd) Festphase. Die Alterung 

der frisch ausgefällten ThO2(am, hyd) Festphase in Lösung bei T = 80 °C bewirkt eine signifikante 

Zunahme der Festphasenkristallinität bzw. der Partikelgröße. Dieses wurde durch XRD Messungen 

bestätigt. Alle in dieser Arbeit verwendeten Methoden zur Festphasencharakterisierung konnten jedoch 

keine klaren Unterschiede in den Festphasen, die unterschiedlich lange und bei verschiedenen pHm –

Werten equilibriert wurden, zeigen. Löslichkeitsexperimente bei Abwesenheit von Carbonat mit frisch 

gefällten oder gealterten Th(IV) Festphasen bei T = 22 °C zeigen eine eindeutige Abnahme der 

Löslichkeit in Experimenten, in denen die Festphasen bei T = 80 °C behandelt wurden. Im Gegensatz 

zu den Befunden aus der Festphasencharakterisierung haben die Alterungsdauer und der pHm während 

der Alterung einen wesentlichen Einfluss auf die Löslichkeit gemessen bei T = 22 °C. Diese scheinbar 

widersprüchlichen Ergebnisse können konsistent dadurch erklärt werden, dass die Löslichkeit durch nur 

wenige Monolagen der ThO2(s, hyd) Festphasenoberfläche kontrolliert wird, was durch die hier 

verwendeten experimentellen Methoden jedoch nicht detailliert abgebildet werden kann. Die in dieser 

Arbeit gewonnenen experimentellen Daten zeigen weiterhin, dass, obwohl die Tendenz zur 

Carbonatkomplexierung bei höheren Temperaturen zunimmt, dieser Effekt auf die Löslichkeit durch die 

erhöhte Kristallinität der ThO2(s, hyd) Festphase bei erhöhten Temperaturen und die hierdurch bedingte 

niedrigere Löslichkeit kompensiert wird. Der Vergleich der in dieser Arbeit gewonnenen neuen 

experimentellen Daten mit den berechneten Löslichkeiten unter Verwendung der von Amphos21 im 

Rahmen von ThermAc abgeschätzten Enthalpiewerte zeigen, dass dieser Ansatz verwendet werden kann 

um obere Löslichkeitslimite von Th(IV) in alkalischen Systemen bei Anwesenheit von Carbonat zu 

bestimmen.  

 

Das Transformationsverhalten einer Np(V)-Hydroxid Festphase wurde untersucht, indem eine 

initial eingesetzte NpO2OH(am,fresh) Festphase in alkalischen NaCl und NaOH Lösungen bei erhöhten 

Temperaturen (T = 80 oC) über 30 Tage equilibriert wurden. Die Umwandlung in kristalline Festphasen 

der Zusammensetzung Na-Np(V)-OH wurde durch XRD und SEM-EDS Analysen bestätigt. Im 

Gegensatz zu amorphem NpO2OH(am,fresh) sind die ternären Na-Np(V)-OH Festphasen durch 

wohldefinierte XRD Diffraktogramme und charakteristische Peaks charakterisiert, die auf das Vorliegen 

von (mikro)kristallinen Np(V) Transformationsprodukten hinweisen. Chemische Analysen, SEM-EDS, 

und XPS zeigen die Bildung von zwei unterschiedlichen Np(V) Festphasen mit spezifischen Np:Na 

Verhältnissen. Dieser Befund ist konsistent mit den Resultaten aus den XRD Analysen. Die vorliegende 

Arbeit bestätigt, dass bei erhöhten Temperaturen neue Np(V)-Festphasen gebildet werden können. 

Weitere experimentelle Arbeiten werden benötig, um zu einer abschließenden Klärung der Relevanz 

dieser Festphasen für die Bewertung der Np(V)-Chemie in aquatischen Systemen zu gelangen.  
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Das Redoxgleichgewicht zwischen Np(V) und Np(IV) bei T = 80 oC wurde als Funktion des pHm 

untersucht, wobei das Redoxpotential in Lösung durch verschiedene redoxaktive Chemikalien 

kontrolliert wurde. Die teilweise oder vollständige Reduktion des initial eingesetzten Np(V)(aq) unter 

Ausbildung schwerlöslicher Np(IV) Festphasen wurde in allen untersuchten Proben beobachtet. Bei 

Anwesenheit von reduzierenden Chemikalien, z.B. AH2QDS, Eisenpulver, SnCl2 oder Hydrochinon bei 

pHm ≥ 8.1, bzw. Fe(II)/Fe(III) bei pHm ≥ 6.2, wurden mehr als 99% des initial eingesetzten Np(V) 

innerhalb von weniger als 35 Tagen reduziert.  Für Proben mit Hydrochinon oder Fe(II)/Fe(III) und 

niedrigeren pHm-Werten war die Reduktion von Np(V) signifikant langsamer. Verglichen mit analogen 

Experimenten des KIT-INE, die mit gleichem experimentellen Ansatz bei Raumtemperatur 

durchgeführt wurden, sind die kinetischen Raten für die Np(V) Reduktion bei T = 80°C signifikant 

größer. 

 

Die Löslichkeit und Hydrolyse von U(VI) wurde in 0.1 – 5.0 M NaCl Lösungen bei T = 25 – 80°C, 

mit den initial eingesetzten Festphasen UO3∙H2O(cr) (4 ≤ pHm ≤ 7) und Na2U2O7∙H2O(cr) (4 ≤ pHm ≤ 7) 

untersucht. Es wurden detaillierte Analysen der Festphasen sowohl vor als auch nach Abschluss der 

Experimente durchgeführt. Die neuen experimentellen Untersuchungsergebnisse erlaubten es, den 

Einfluss der Temperatur und der Lösungszusammensetzung (Hintergrundelektrolyt) auf die Löslichkeit 

der verschiedenen Uran(VI)-Festphasen detailliert zu bewerten. Hierbei wurde die Stabilität der Spezies 

und strukturelle Änderungen in den Festphasen analysiert. Für Metaschöpit UO3·2H2O(cr) wurde eine 

Umwandlung in eine dem Natriumuranat ähnliche Festphase gefunden. Dieser Prozess wurde unter 

sauren Bedingungen beobachtet, wobei das initial eingesetzte Festphasenmaterial in Lösungen mit 

[NaCl] = 0.51 und 5.6 m bzw. T = 55 und 80 °C equilibriert wurde. Eine Alteration der löslichkeits-

bestimmenden Festphase wurde in den Experimenten bei T = 25 °C nicht gefunden. Die Festphase 

Na2U2O7∙H2O(cr) ist unter den untersuchten Rahmenbedingungen thermodynamisch stabil. Unter 

hyperalkalischen pHm-Bedingungen wird die Löslichkeit von of U(VI) durch die prädominante 

Hydrolysespezies UO2(OH)4
2– in Lösung bestimmt. Die hiermit korrelierte Löslichkeit wurde in den 

Untersuchungen bei höheren Temperaturen verglichen mit dem gleichen System bei 25 °C signifikant 

um 2.5 logarithmische Einheiten erhöht. Dieser Effekt ist primär mit einer erhöhten Wasser-Azidität bei 

höheren Temperaturen korreliert. Die Temperaturabhängigkeit des Löslichkeitsprodukts von 

Na2U2O7∙H2O(cr) und der Hydrolysekonstante von UO2(OH)4
2– liefern Argumente, dass der beobachtete 

Effekt konsistent durch die abnehmende Stabilität des Festkörpers Na2U2O7∙H2O(cr) und einer 

Stabilisierung der wässrigen Spezies UO2(OH)4
2– bei höheren Temperaturen erklärt werden kann. Das 

für dieses System abgeleitete thermodynamische Modell (d.h. Löslichkeitsprodukte der Festphasen, 

Komplexbildungskonstanten und Enthalpiedaten) erlauben eine genaue und robuste Beschreibung bzw. 

Berechnung der Löslichkeit und chemischen Speziation von U(VI) bei erhöhten Temperaturen unter 

alkalischen bis hyperalkalischen Bedingungen.   
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Die Löslichkeit im ternären Systems Ca-U(VI)-CO3 bei T = 22 und 80 °C wurde experimentell 

untersucht. Es wurde eine wesentliche Auflösung des eingesetzten Liebigits, Ca2UO2(CO3)3·10H2O(cr), 

nach Erreichen des Gleichgewichtszustands bei T = 22 oC in Lösungen mit [NaCl] ≤ 0.5 M 

nachgewiesen, und Ca2UO2(CO3)3·10H2O(cr) als löslichkeitsbestimmende Festphase unter den 

untersuchten Bedingungen bestätigt. Deutlich niedrigere U(VI) Gleichgewichtskonzentrationen wurden 

in 5 M NaCl Lösung bei T = 22 oC gefunden. Chemische Analysen, XRD, und SEM-EDS 

Untersuchungen bestätigen in diesem System eine Transformation von Liebigit in Andersonit, 

Na2CaUO2(CO3)3·6H2O(cr), d.h. eine Festphase mit Na und Ca in der Struktur. Bei erhöhten 

Temperaturen erfolgt eine Destabilisierung des Liebigits und Umwandlungen in Ca-Uranat bzw. Na-

Uranat Festphasen. Auf Basis der experimentellen Löslichkeitsdaten (gemessen bei T = 22 oC) wurden 

thermodynamische Löslichkeitsprodukte für Liebigit und Andersonit abgeleitet. 

 

Die im Rahmen der Untersuchungen von KIT-INE verwendete Kombination aus experimentellen 

Löslichkeitsstudien, Redoxexperimenten, ausführlichen Festphasenanalysen und thermo-

dynamischen Analysen ermöglicht eine signifikant verbesserte wissenschaftliche Beschreibung 

und Quantifizierung des Einflusses der Temperatur auf die aquatische Chemie von 

An(III)/Ln(III), An(IV), An(V) und An(VI) unter endlagerrelevanten geochemischen 

Bedingungen. Die gewonnenen Ergebnisse liefern zudem signifikant verbesserte Möglichkeiten zur 

Validierung der innerhalb ThermAc entwickelten Schätzmethoden für thermodynamische Daten und 

Eigenschaften von Festphasen und gelösten wässrigen Spezies. Die ermittelten thremodynamischen 

Daten können ggf. zu einem späteren Zeitpunkt in die thermodynamische Referenzdatenbasis 

THEREDA (www.thereda.de) integriert werden. 
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Beschreibung der wissenschaftlichen Arbeiten von KIT-INE innerhalb ThermAc 

 

1.  Introduction and scope of work 

 

Temperature is one of the parameters that will vary during the different phases of operation of a high 

level radioactive waste (HLW) repository. Elevated temperature conditions (up to 200°C depending on 

hostrock system and repository concept) will affect actinide chemistry in the near-field of a HLW 

repository. Under the reducing conditions foreseen after the closure of the repository due to the anoxic 

corrosion of iron, the oxidation states +III and +IV are expected to dominate the solution chemistry of 

the actinides. Tetravalent actinides are characterized by strong hydrolysis and the formation of sparingly 

soluble amorphous hydrous oxides in aquatic systems. The transition of these amorphous solids, 

AnO2(am, hyd), into the thermodynamically stable crystalline phases AnO2(cr), is kinetically hindered 

and is generally not observed in aqueous systems. Temperature may facilitate this transition with the 

consequent decrease of the overall solubility. Pentavalent Np attracts some attention with respect to 

environmental questions because of its broad stability fields (pH and Eh), its rather great mobility and 

high solubility under many solution conditions. However, the impact of temperature on the redox 

behaviour of the Np(V/IV) couple as well as on the Np(V) solid phases controlling the solubility under 

alkaline to hyperalkaline conditions has been scarcely investigated. Uranium is the main element present 

in spent nuclear fuel and accordingly contributes with the largest inventory to the nuclear waste. 

Although a large number of studies have previously investigated the solution chemistry of uranium, a 

number of key uncertainties remain with respect to its chemical behavior at elevated temperatures, 

especially in the alkaline to hyperalkaline pH conditions of relevance for nuclear waste disposal. 

In this context, this work by KIT-INE aims at a comprehensive description of the impact of temperature 

on the solution chemistry of Nd(III), Th(IV), Np(IV/V) and U(VI). The study covers pH conditions 

ranging from acidic to hyperalkaline, covers oxidizing to very reducing systems and extends from dilute 

to concentrated salt systems (up to 5 M NaCl). Experiments with Th(IV) and U(VI) are conducted both 

in the absence and in the presence of carbonate. The combination of fundamental research with an 

applied character is highlighted throughout the discussion of the results obtained within this project. As 

ultimate goals, this work aims at providing robust solubility upper limits to be considered in source term 

estimations, as well as at deriving comprehensive thermodynamic models including enthalpy data for 

the investigated systems. These thermodynamic data can be implemented in thermodynamic databases 

(i.e. THEREDA or NEA–TDB) and further used in geochemical calculations of relevance in the 

framework of the nuclear waste disposal. This work also contributes to sound experimental data for the 

validation of the estimation methods developed by Amphos21 and PSI-LES within the ThermAc project 

for the evaluation of thermodynamic properties at elevated temperatures.  
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2.  Executive summary 

 

The work performed by KIT-INE within ThemAc provides an improved fundamental scientific 

understanding on the solution chemistry of selected actinides in the oxidation states +III, +IV, +V and 

+VI at elevated temperature, with focus on four main aspects, namely solubility, hydrolysis, redox 

behavior and complexation with carbonate. This contributes to an improved scientific description of 

actinide chemistry in the context of high level nuclear waste disposal, and other fields of environmental 

concern where a quantitative description of actinide solution chemistry at elevated temperature is 

required. Focus is given to conditions and systems for which relevant thermodynamic datagaps have 

been identified or controversial discussions were ongoing in the interested scientific/technical 

community. The reported studies were performed in the controlled area of KIT-INE, making use of the 

excellent analytical and spectroscopic tools available for the work on radionuclides at this facility. A list 

of peer reviewed publications by KIT-INE in ThermAc is provided at the end of this report, together 

with several dissemination activities at workshops and conferences. 

 

The solubility of Nd(III) was investigated in 0.1 – 5.0 M NaCl solutions at T = 25 – 80 °C in the pHm 

range 6.5 – 9 (with pHm = –log [H+], [H+] in molal units). The solid phases collected after completing 

the solubility experiments were isolated and characterized with powder XRD. The initial solid phase 

material was stable when equilibrated in 0.1 and 0.5 M NaCl, in all conditions of testing. A solid phase 

transformation leading to the formation of Nd(OH)2Cl(s) occurred when Nd(OH)3(s) was equilibrated 

in 5 M NaCl solutions with pHm < 8. The concentration of Nd(III) in solution under these conditions 

was markedly lower than the one predicted for Nd(OH)3(s) based on recent thermodynamic models. 

This supports that Nd(OH)2Cl(s) is the solid phase controlling the solubility of Nd(III) in solutions with 

[NaCl] = 5.6 m at pHm < 8. Solubility data collected for Nd(OH)3(s) at elevated temperature does not 

allow deriving a thermodynamic model for this system including enthalpy data. However, the results 

obtained in this work qualitatively confirm that temperature has a modest impact of the solubility of 

Nd(III) within the investigated boundary conditions.  

 

The influence of temperature on Th(IV) solid phases, solubility and complexation with carbonate 

was systematically investigated under Ar atmosphere using a freshly precipitated ThO2(am, hyd) solid 

phase as starting material. The ageing of the freshly precipitated ThO2(am, hyd) solid phase at T = 80 

°C induces a significant increase of the crystallinity and particle size, as confirmed by XRD 

measurements. However, all solid phase characterization methods used in this work are unable to resolve 

clear differences between solid phases aged for different time periods or at different pHm values. 

Solubility experiments with fresh and aged Th(IV) solid phases conducted in the absence of carbonate 
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at T = 22 °C show a clear decrease in the solubility of the solid phases aged at T = 80 °C. In contrast to 

the observations gained by solid phase characterization, the ageing time and ageing pHm have a very 

important impact on the solubility measured at T = 22 °C. These apparently discordant observations can 

be explained in a consistent manner by claiming a solubility control by a few monolayers in the surface 

of the ThO2(s, hyd) solid, which cannot be properly probed by any of the techniques considered in this 

work. Experimental data obtained in this work indicate that although complexation with carbonate is 

enhanced by elevated temperature, this effect is mostly compensated by the increased crystallinity of 

ThO2(s, hyd) at elevated temperature with the consequent decrease in solubility. The comparison of 

experimental data with solubility calculations using enthalpy estimates generated by Amphos21 within 

this project show that this approach can be used to assess upper solubility limits of Th(IV) in alkaline 

systems in the presence of carbonate. 

 

The transformation behavior of solid Np(V)-hydroxide was investigated by equilibrating initial 

NpO2OH(am,fresh) in alkaline NaCl and NaOH solutions at elevated temperature (T = 80 oC) for 30 

days. Transformation into crystalline Na-Np(V)-OH solid phases was confirmed by XRD and SEM-

EDS analyses. In contrast to amorphous NpO2OH(am,fresh), the ternary Na-Np(V)-OH solid phases 

reveal well-defined XRD patterns with characteristic peaks pointing to the presence of (micro)crystalline 

Np(V) transformation products. Chemical analysis, SEM-EDS, and XPS reveal the formation of two 

different Np(V) solid phases with individual Np : Na ratios, which is consistent with the result obtained 

from the XRD. The present work confirms that new solid compounds of Np(V) can form at elevated 

temperature. Further dedicated experimental efforts are required to clarify their potential relevance for 

the assessment of Np(V) chemistry in aqueous systems.  

 

The redox equilibrium between Np(V) and Np(IV) was studied at T = 80 oC as a function of pHm 

and the redox potential adjusted by chemically different reducing agents. Partial or complete reduction 

of initial Np(V)(aq) to sparingly soluble Np(IV) was observed for all samples investigated. In the 

presence of reducing chemicals, i.e. AH2QDS, Fe powder, SnCl2 or hydroquinone with pHm ≥ 8.1, and 

Fe(II)/Fe(III) with pHm ≥ 6.2, more than 99% of initial Np(V) was reduced within less than 35 days. For 

hydroquinone and Fe(II)/Fe(III) samples with lower pHm values, reduction of Np(V) was significantly 

slower. Compared to analogous experiments performed at room temperature conditions using the same 

approach, the rates for Np(V) reduction are significantly greater at T = 80°C. 

 

The solubility and hydrolysis of U(VI) was investigated in 0.1 – 5.0 M NaCl solutions at T = 25 – 

80°C, using UO3∙H2O(cr) (4 ≤ pHm ≤ 7) and Na2U2O7∙H2O(cr) (4 ≤ pHm ≤ 7) as starting materials. An 
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extensive characterization of the solid materials before and after the completion of the solubility 

experiments was conducted. Results from the different experimental approaches allowed to evaluate the 

impact of temperature and of the ionic medium on the solubility of the different materials, the stability 

of the solid phases and possible structural changes occurring. A partial solid phase transformation of 

UO3·2H2O(cr) into a sodium uranate-like material was observed. This process occured in acidic 

conditions, when the initial material was equilibrated in solutions with [NaCl] = 0.51, 5.6 m at T = 55, 

80 °C. An alteration of the solid phase was not observed in experiments conducted at T = 25 °C. 

Na2U2O7∙H2O(cr) resulted thermodynamically stable within the investigated boundary conditions. In 

hyperalkaline pHm conditions, the solubility of U(VI) was governed by the formation of UO2(OH)4
2– 

and it was significantly enhanced by temperature, up to 2.5 log10-units with respect to the same system 

at 25 °C. This effect was mainly attributed to an increased acidity of water at higher temperatures. The 

temperature dependence of the solubility product Na2U2O7∙H2O(cr) and of the hydrolysis constant of 

UO2(OH)4
2– also suggests that minor contributions also derive from a decreased stability of 

Na2U2O7∙H2O(cr), together with an enhanced stabilization of UO2(OH)4
2– at higher temperatures. The 

thermodynamic model derived (including solubility constants, hydrolysis constants and enthalpy data) 

allow accurate solubility and speciation calculations of U(VI) at elevated temperatures and high pHm.  

 

The solubility of the ternary system Ca-U(VI)-CO3 was investigated at T = 22 and 80 °C. 

Considerable dissolution of liebigite, Ca2UO2(CO3)3·10H2O(cr), was observed after reaching the 

equilibrium at T = 22 oC in solutions with [NaCl] ≤ 0.5 M. Ca2UO2(CO3)3·10H2O(cr) was confirmed as 

the solubility controlling solid phase under these conditions. Remarkably lower U(VI) equilibrium 

concentrations were observed in 5 M NaCl solutions at T = 22 oC. Chemical analysis, XRD, and SEM-

EDS confirmed a transformation of liebigite into andersonite, Na2CaUO2(CO3)3·6H2O(cr), in this 

system. At elevated temperature, destabilization of liebigite and transformation into Ca-urante and Na-

diuranate phases took place. Based on the experimental solubility data obtained at T = 22 oC, the 

solubility products of liebigite and andersonite were quantitatively derived. 

 

The methodology adopted by KIT-INE in ThermAc, using a combination of comprehensive 

solubility studies, redox experiments, extensive solid phase characterization and thermodynamic 

evaluation, provides a significantly improved scientific basis for the quantitative evaluation of the 

impact of temperature on the solution chemistry of An(III)/Ln(III), An(IV), An(V) and An(VI) 

under geochemical conditions of relevance in the context of nuclear waste disposal. The results also 

contribute to the validation of estimation methods developed within the ThermAc project for the 

evaluation of thermodynamic properties at elevated temperature of radionuclide solid compounds and 

aqueous species and can eventually be integrated into THEREDA (www.thereda.de) at a later stage.
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3.  Experimental 

 

3.1  Chemicals. pH and Eh measurements 

 

All solutions were prepared with deionized water obtained from the water purification system (18.2 

MΩ·cm, Milli-Q®, Merck Millipore). NaCl (p.a.), NaOH-Titrisol®, HCl-Titrisol® and Suprapur®-

grade HNO3 were purchased from Merck. Detailed descriptions of the chemicals used and the sample 

preparation are provided in the corresponding subchapters. 

The pHm was measured with combination glass electrodes (Orion ROSS). Prior to the sampling, 

electrodes were calibrated against diluted commercial pH buffer solutions at T = 22, 25, 55 or 80 °C 

(Merck, pH 2 – 12 at T = 20 °C, the corresponding pH values at different temperatures were provided 

by the manufacturer) to relate the potential of the electrode to a value of pHexp, according to the Nernst’s 

law. pHm was calculated as pHm = pHexp + Am, where Am is an empirical parameter accounting for both 

the junction potentials of the electrode and the activity of H+. Am depends both on the ionic medium and 

the temperature. Values of Am were experimentally determined in the present study by measuring the 

pHexp of HCl solutions with known concentrations (from 1.25∙10-3 to 0.02 m) prepared in different NaCl–

HCl media (0.10, 0.51, 5.6 m) at the different temperatures. 

In the case of the batches with pHm > 12, outside the calibration range of the electrode, [H+] was instead 

calculated from the analytical (initial) concentration of hydroxide OH–. In these highly alkaline 

conditions pHm was reasonably assumed to be stable throughout the studies. 

The Eh values of selected samples were measured by using combined Pt ring electrodes with Ag/AgCl 

reference system filled with 3 M KCl solution (Metrohm). The experimental redox potentials were 

corrected with respect to the potential of the standard hydrogen electrode (SHE). The redox electrodes 

employed in the present work were regularly tested with redox standard solutions (220 mV versus SHE, 

Schott Instruments). 

 

3.2  Solubility experiments with Nd(OH)3(s) 

 

Nd(OH)3(s) was prepared by contacting 0.5 g of Nd2O3(cr) (Merck) in MilliQ deionized water, 

preliminarily boiled and degassed under a stream of Ar. The batch was equilibrated at room temperature 

until the solid was fully hydrated. The solid was preliminarily equilibrated in MilliQ water, at T =80 °C 

for 30 days. Results from the characterizations of the material isolated at the end of the equilibration 

process confirmed the expected composition and morphology of the desired material. 
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Solubility experiments were conducted in an Ar glovebox, in conditions excluding of CO2 and hence 

carbonate in solution. Batch solutions composed of 15 – 20 mL of NaCl / NaOH / HCl solutions, 

depending on the desired pH and on the total ionic strength were contacted with 5 – 15 mg of 

Nd(OH)3(s). In the case of experiments conducted at T = 22 and 25 °C batches were prepared in 20 mL 

HDPE screw-cap vials. Batch systems to be equilibrated at T = 55 or 80 °C were prepared in 25 mL 

PTFE screw-cap vials (Semadeni Plastic Group). To verify that no organic substances were released 

from the PTFE vessels in solution, test vials were preliminarily filled with NaCl solutions with different 

concentration (0.1 to 5.6 m), pH 4 -13.7 and equilibrated at T = 25 – 80 °C. Total organic carbon analyses 

were then conducted with a Shimadzu 5000 TOC instrument. Results excluded the presence of organic 

carbon above the detection limit of the technique (~ 0.1 ppm), and hence underline that the adopted 

methodology does not introduce artefacts related to leached organic components from the vessels. 

Batches to be equilibrated at T = 55 or 80 °C were placed into compact ovens (Falc Instruments) fitted 

into the glovebox. The precision of the temperature during the equilibration of the samples was (22 and 

25  1 °C), (55  0.5 °C), (80  2 °C). Nd concentrations were determined by Inductively-Coupled 

Plasma Mass Spectrometry (ICP–MS, Perkin Elmer ELAN 6100). In all samples equilibrated at room 

temperature, an aliquot of 0.075 – 0.100 mL of supernatant solution was taken and the solid phase was 

separated by ultrafiltration (10 kD filters; NanoSep Merck Millipore, pore size  2 nm). For the 

separation of the solid phases equilibrated at elevated temperatures, a rapid syringe filtration (Pall 

Acrodisc® filters, pore size 0.1 μm, PTFE membrane) was used. This step was performed within t < 10 

seconds and involved a slight decrease in temperature of the filtrate to T > 70 °C. The comparison of 

this approach with other methods indicated no impact of the separation method on the measured metal 

concentration. 

Morphological characterization of the solid phases isolated both after their preparation and at the end of 

the solubility experiments were conducted with X-ray diffraction of the dried powders (XRD), 

differential thermal analysis (DTA) and scanning electron microscopy with X-ray analysis of the 

scattered electrons (SEM–EDS). Elementary analyses were also performed by means of ICP-OES after 

dissolution of the solids in 2% HNO3. 

 

3.3  Solubility experiments with ThO2(s, hyd) in the absence and presence of carbonate 

 

A nitrate-free 232ThCl4 solution was prepared by the slow titration of a 0.15 M Th(IV) nitrate solution 

with 1.0 M NaOH to pH ≈ 10-11. The resulting solid, i.e. ThO2(am,hyd), was centrifuged for 10-

15 minutes at 4000 g in order to separate the nitrate-rich supernatant. The remaining precipitate after 

centrifugation was dissolved in 0.1 M HCl. This procedure was repeated until nitrate was washed out 
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(< 10 ppm, determined with the colorimetric test strips Merck MQuant®). Approximately 1.2 g of 

ThO2(am,hyd) solid phase was obtained as the result of a final slow precipitation by using a 1.0 M NaOH 

solution to reach pH ≈ 11.  

The original ThO2(am,hyd) suspension was divided into 9 aliquots of approximately 130 mg each with 

the aim of investigating the impact of pH, temperature and aging time on the crystallinity and solubility 

of the Th(IV) solid phases. Eight of the suspensions were prepared in either 0.1 M HCl-NaCl (pHm ≈ 3) 

or 0.1 M NaOH (pHm = 12.8) at T = (22 ± 2) °C, and aged at T = (80 ± 2) °C for 1, 2, 4.5 and 5.5 

months. An additional aliquot was used to characterize the freshly precipitated solid phase. Note that 

because of the increase of the pKw of water with temperature, the actual pHm of the 0.1 M NaOH 

suspensions was significantly lower at T = (80 ± 2) °C, i.e. pHm(T = 80 °C) = 11.2. All solid phases 

were characterized before and after equilibration by means of X-ray powder diffraction (XRD). For 

comparison with the Th(IV) solid phases synthesized and aged in this study, a solid phase precipitated 

in 2008 and aged for 12 years at room temperature was also investigated. 

The solid phases described above were used for the preparation of different series of solubility samples 

in the absence and presence of carbonate at T = 22 and 80 °C. Each solubility sample was prepared with 

1.5 – 3 mL of the corresponding solid suspension (fresh precipitate or solid phases aged at T = 80 °C). 

This aliquot was centrifuged for 5 minutes at 4000 g, separated from the supernatant, and washed 2 

times with the corresponding equilibration solution. After the last washing step, the solid phase was 

contacted with 5-20 mL (depending upon pHm) of the equilibration solution. 

Seven series of solubility experiments were prepared in the absence of carbonate, using a freshly 

precipitated ThO2(am,hyd), and ThO2(s) aged for 1, 2 and 4.5 months (pHm = 3 and 12.8) at 

T = (80 ± 2) °C. After the given ageing time at elevated temperature, the samples were equilibrated at 

T = 22 °C in 0.1 M NaCl solutions with 2.3 < pHm < 6.3. Concentration of Th and pH were monitored 

at regular time intervals until equilibrium conditions were attained (defined by constant [Th] and pHm 

readings). Thorium concentrations were measured by ICP-MS after a filtration step. 

One series of solubility samples was prepared in 0.1 M NaOH solutions containing [CO3
2-]tot = 0.01, 

0.03, 0.1, 0.3, 0.6, 1.0 and 1.5 M. Experiments were conducted with a ThO2(s) solid phase aged for 2 

months at T = 80 °C and pHm(25 °C) = 12.8. In contrast to the experiments in the absence of carbonate, 

the samples containing carbonate were equilibrated both at T = (22 ± 2) °C and T = (80 ± 2) °C. The 

experiments at T = (22 ± 2) °C are analogous to those described in Altmaier et al. (2005) [1], although 

in the present study a tempered ThO2(s,hyd) phase instead of a freshly precipitated ThO2(am,hyd) was 

used. The concentration of Th and pH were monitored at regular time intervals. 

A phase separation step was conducted in all cases before ICP-MS measurements in order to separate 

colloids and suspended particles. For the samples in the absence of carbonate (T = 22 °C), an aliquot of 
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the supernatant of each sample was centrifuged (12000 g) with 10 kD filters. The phase separation of 

the samples equilibrated in carbonate solutions (T = 22 and 80 °C) was carried out using syringe filters 

(Whatman 13 mm Disposable Filter Device, PTFE, 0.1 µm). The solubility samples containing 

carbonate and equilibrated at T = 80 °C were placed in a block heater (IKA Dry Block Heater 3) during 

the sampling process in order to ensure constant temperature conditions. The filtrate obtained after the 

10 kD or syringe filtration was diluted using 2 % ultrapure HNO3. A dilution factor of 1:25 to 1:106 was 

considered as a function of the concentrations of salt and Th (expected) in the corresponding sample.  

 

3.4  Solid phase transformation of Np(V) 

 

All experiments were conducted under controlled Ar atmosphere conditions (O2 < 5 ppm) in glove 

boxes. An ion-exchange column purified and oxidation state pure 237NpO2
+ stock solution (0.055 m 

NpO2
+ in 0.1 m HCl) was used for the experiment. For the preparation of initial NpO2OH(am,fresh), 2.5 

ml of 0.2 m NaOH was added to a solution containing 6.2 ml of the 0.055 m 237NpO2
+ stock solution 

and 20 ml of H2O. NaCl and NaOH were used to prepare NaCl-NaOH (I = 0.1 and 5.6 m) background 

electrolyte solutions with constant ionic strength and pHm ≈ 13. Approximately 5 mg of the freshly 

precipitated NpO2OH(am,fresh) were equilibrated with 20 ml of the corresponding background 

electrolyte solutions in PTFE-lined stainless steel/titanium autoclaves. The autoclaves were tempered at 

T = 80 ± 5 oC for 30 days. After heating, the autoclaves were gradually cooled down to room temperature 

over 96 hours. Subsequently, the pHm and Eh values of all samples were measured at room temperature 

and total Np concentrations in the aqueous phase were determined by liquid scintillation counting (LSC; 

Quantulus, Ultima Gold cocktail) after ultrafiltration with 10 kD filters (Pall, Omega Nanosep 10K). 

 

3.5  Np(IV)/Np(V) redox behavior 

 

All samples were prepared and handled in an Ar glove box (O2 < 5 ppm), and stored inside a lab oven 

(Falc instruments) at T = 80 oC using PTFA vials. The redox conditions in the investigated samples were 

controlled by additions of homogeneous or heterogeneous chemical redox reagents in 15 mL of 0.1 m 

NaCl, namely  

(i) 1.2 mmol/L anthraquinone (AQDS) + 0.4 mmol/L anthrahydroquinone-2,6-disulfonate (AH2QDS) 

(obtained by partial reduction with Na2S2O4),  

(ii) Fe powder (ca. 4 mg Fe powder; Merck, ≥ 99.5 %, grain size: 10 µm),  

(iii) 3 mmol/L SnCl2 (Sigma-Aldrich, 98%),  
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(iv) 1.0 mmol/L FeCl2 + 0.1 mmol/L FeCl3 (Sigma-Aldrich), and  

(v) 1 mmol/L hydroquinone (Sigma-Aldrich).  

The pHm values in the samples were between 5 and 10, partly fixed by using 0.01 mol/l of MES, HEPES, 

and CHES buffer solutions. After equilibration of the (inactive) redox matrix solutions at T = 80°C for 

2 ‒ 4 weeks, aliquots of a 12 mM NpO2
+ stock solution were spiked to the different samples resulting in 

initial Neptunium concentrations [Np(V)]° = (5±1)∙10−5 m. The pHm and Eh values of supernatant 

solutions were regularly monitored at T = 80 ± 0.5 oC using a dry block heater system (IKA). Total Np 

concentrations in the aqueous phase were determined by liquid scintillation counting (LSC; Quantulus, 

Ultima Gold cocktail) and high-resolution ICP-MS after ultrafiltration with 10 kD filters (Pall, Omega 

Nanosep 10K). As Np(IV) is sparingly-soluble under the experimental conditions with [Np(IV)] < 1∙10−8 

M, and as sorption of Np(V) is negligible in the redox samples, a decrease of the initial [Np(V)]° 

represents a reduction of Np(V) to Np(IV).   

 

3.6  Solubility experiments with UO32H2O(cr) and Na2U2O7H2O(cr) 

 

Solubility experiments were conducted in NaCl 0.10, 0.51. 5.6 m at T = 25, 55, 80 °C. The starting solid 

phase materials were synthesized as follows: metaschoepite was prepared by the slow titration of a 

solution having 0.01 M of uranyl nitrate (UO2(NO3)26H2O, Merck) with 0.05 M NaOH. The pH was 

kept in the range pH ~ 4–5 to avoid the incorporation of Na+ into the layered structure of metaschoepite 

expected at higher pH. The solid phase was separated and stored in Milli-Q water at room temperature. 

For the preparation of sodium uranate, a batch of metaschoepite was precipitated in a solution with NaCl 

1.0 M. The fresh precipitate was titrated with 0.1 M NaOH up to pH = 11. The solid phase transformation 

was quantitatively achieved in one week. Before starting the solubility experiments, the solid phases 

were equilibrated in aqueous solution at T = 80 °C for 30 days. This procedure ensured the same degree 

of crystallinity of the initial phases in the different experiments. In particular, metaschoepite was 

equilibrated in milliQ water and sodium uranate in aqueous solution of [NaCl] = 2.5 M, [NaOH] = 0.05 

M. Characterizations of the tempered materials confirmed the stoichiometry and the morphology 

expected for the desired products. 

Solubility experiments were performed following the same approach as described in chapter 3.2 for 

Nd(III). Metaschoepite was used as starting material in all experiments at pHm ≤ 6, whereas sodium 

uranate was considered for all alkaline samples. The solid phases were characterized both after their 

preparation and at the end of the solubility experiments with the techniques described in chapter 3.2. 

Additionally, time-resolved laser induced luminescence analyses were carried out on selected 

UO32H2O(cr) solid phases, isolated before and after the solubility experiments in NaCl 0.10, 0.51, 5.6 
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m at T = 25, 55, 80 oC. Experiments were performed by using the 4th harmonic of a Nd:Yag laser 

(SpitLight Compact 100, InnoLas Laser) at 266 nm and 7 ns pulse duration as excitation source.  

 

3.7  Solubility experiments with Ca-U(VI)-CO3(s) phases 

 

Solubility experiments in the ternary system Ca-U(VI)-carbonate were performed by equilibrating about 

250 mg of synthetic liebigite, Ca2UO2(CO3)3·10H2O(cr), provided by Helmholtz-Zentrum Dresden 

Rossendorf (Dr. Steudner and Dr. Brendler) in 5 ml of (i) deionized water, (ii) 0.51 m NaCl, and (iii) 

5.61 m NaCl solution. The pHm of the samples was adjusted to 7.9 ‒ 8.2 by using HCl/NaCl and 

NaOH/NaCl solutions of the same ionic strength. After the pH adjustment, the ionic strength of sample 

(i) is calculated to be ca. 0.03 m NaCl, according to the HCl/NaCl and NaOH/NaCl solutions spiked 

into the sample. A lab oven (Falc Instruments) was used for maintaining elevated temperature conditions 

(T = 80 oC). The pHm value and U(VI) concentrations were regularly monitored within a period of 132 

days. Total concentrations of U(VI) and Ca in the solutions were determined by using inductively-

coupled plasma ‒ mass spectrometry (ICP-MS, Perkin Elmer ELAN 6100) and inductively-coupled 

plasma ‒ optical emission spectrometry (ICP–OES, Perkin Elmer OPTIMA 2000™), respectively, after 

phase separation by syringe filtration (Pall Acrodisc® filters, pore size 0.1 μm, PTFE membrane). 
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4.  Results and discussion 

 

4.1.  Solubility and hydrolysis of Nd(OH)3(s) in NaCl 0.1, 0.5, 5.6 m at T = 25, 55, 80 °C 

 

4.1.1  Solubility experiments 

 

Figure 1 shows the solubility data of Nd(OH)3(s) at different temperatures and ionic media. A 

comparison of the newly measured solubility data with relevant literature data is provided. The solubility 

of Nd(OH)3(s) measured at T = 25 °C in [NaCl] = 0.10 and 0.51 m, is in good agreement with the 

corresponding data by Neck et al. in the same background electrolyte media [2]. In the present study 

and in the one by Neck et al., the initial material was prepared with the same procedure, involving the 

hydration of Nd2O3(cr) in MilliQ water (18 MΩ/cm) at room temperature. In the present work, 

Nd(OH)3(s) was preliminary equilibrated at 80 °C before being used in all solubility experiments. The 

comparable solubilities of Nd(OH)3(s) prepared in the two works suggest little impact of temperature 

on the crystallinity of the solid phase. The measured solubility in [NaCl] = 5.6 m at pHm = 8.6 compares 

well with the one determined by Neck et al., but it is significantly lower in the more acidic solutions, by 

up to two orders of magnitude at pHm = 7 – 7.5.  
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(a) 

 

(b)      (c) 

Figure 1. Solubility of Nd(OH)3(s) in [NaCl] = 0.1 (a), 0.51 (b), and 5.6 m (c) at T = 25, 55, 80 °C. 

Experimental data: Nd(III) concentration vs pHm. Dashed lines: SIT model calculations at T = 25 °C. 

Relevant literature data also displayed for comparison: Neck et al. 2009 [2], Wood et al. 2002 [3], Rao 

et al. 1996 [4]. 
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The solubility of Nd(OH)3(cr) determined by Wood et al. [3] ([Na(CF3SO3)] (Na-triflate) = 0.03 m, T = 

30 °C) is in reasonable agreement with the one measured in the present work in [NaCl] = 0.10 m at T = 

25 °C. Wood et al. prepared Nd(OH)3(cr) by equilibration of Nd2O3(cr) in MilliQ water at T = 200-250 

°C and saturated vapor pressure (2 weeks). Characterizations of the initial material by means of XRD, 

TGA and IR spectroscopy were consistent with Nd(OH)3(cr). The similar solubility of the material 

prepared by Wood et al., with respect to the one in the present work, suggests that the crystallinity of 

the two Nd(OH)3(s) solids does not depend significantly on the temperature of equilibration of the initial 

oxide.  

The solubility of Nd(OH)3(cr) measured by Rao et al. [4] in [NaCl] = 0.10 m at T = 25 °C is significantly 

lower than the one determined in the present work. It appears that the solid phase considered in Rao et 

al. was significantly more crystalline than the one investigated in the present work. In the work by Rao 

et al., Nd(OH)3(cr) was prepared by firstly precipitating amorphous Nd(OH)3(am) phase from a solution 

of NdCl3 in the presence of concentrated NaOH. A slurry of the initial material was then aged in 5 M 

NaOH at 90 °C. The characterization conducted with XRD confirmed the solid initially precipitated 

turned into a crystalline material, Nd(OH)3(cr) after aging. This preparative procedure should yield a 

material with a solubility similar to the one in the present work. Wood et al. [3] suggested that the 

solubility of Nd(III) determined by Rao et al. [4], significantly lower than expected, instead, could be 

attributed to the formation of a surface Nd(OH)CO3(s) layer, less soluble than the hydroxide, not 

detectable by XRD, but controlling the overall solubility. In a previous contribution, Diakonov et al. 

also indicated that stable Nd(OH)CO3(s) phases should already form in condition of CO2 partial 

pressures as low as 10-6–10-5 bar [5]. Thus, a great care is needed to avoid CO2 contamination, during 

the preparation of Nd(OH)3(cr) and the sampling operations. 

Solubility data of Nd(OH)3(s) determined at T = 55, 80 °C are shown in Figure 1 as orange and red 

bullets, respectively. Although these experiments were initially designed to cover the pHm range 7 – 9.5, 

significant pHm shifts were observed to occur overtime, as the solid phases equilibrated. Generally, an 

increase of pHm was observed in samples with an initial pHm < 7, while a decrease of pHm occurred 

overtime in samples with pHm above 8. In the first case, attempts were made to correct the alkalinity by 

addition of volumes of HCl solutions conveniently prepared in the same medium of the sample treated. 

The amounts and concentrations of these solutions were analytically calculated and a glass electrode 

was used to monitor the pHm change following the dropwise additions. Despite this care, in some 

samples a quantitative dissolution of the solid phase occurred due to the acidification. Such samples 

were therefore discarded. 

Due to these drawbacks, only few solubility data at T = 55, 80 °C were obtained and limited to a 

relatively narrow pHm range. These data are too scarce to allow the modelling of the solubility of 

Nd(OH)3(s) at the two higher temperatures, but a qualitative description can be provided. As shown in 
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Figure 1, the temperature has a modest impact on the solubility of Nd(OH)3(s). The solubility at T = 25, 

55 °C appears comparable, within the uncertainties in [NaCl] = 0.10, 5.6 m. Data from experiments 

conducted in 0.51 m NaCl indicate a decrease of about ~ 0.5 log [Nd] units at T = 55 °C, with respect 

to the same data at T = 25 °C; a similar decrease is observed in solutions of [NaCl] = 0.1 – 5.6 m at T = 

80 °C, with respect to corresponding data at T = 25°C in the same pHm conditions. 

These data are consistent with the results by Rao et al. (see Figure 1) [4], where a decrease of about ~ 

0.8 log [Nd] units was observed at T = 90 °C, with respect to the concentration measured at T = 25 °C 

at the same pHm. As already pointed above, in the work by Rao et al. the solubility of Nd(OH)3(cr) at T 

= 25 °C was significantly lower than the one in the present work. In the work by Wood et al. (Na-triflate 

0.03 m, T = 30 – 290 °C) [3], a significant dependence of the solubility of Nd(OH)3(cr) on the 

temperature was found, instead, as evidenced by the data comparison in Figure 1. As opposed to the 

data previously published by Rao [4] and in the indications in the present work, the solubility of 

Nd(OH)3(cr) measured by Wood et al. was more than 4 orders of magnitude lower at 100 °C, with 

respect to the data at 30 °C. Such large differences between the three sets of experimental data by Wood, 

Rao and in the present work cannot be explained by the different background electrolytes used in the 

different works. The concentrations of Nd in the present work, being significantly higher than the one 

determined by Wood et al. [3], could instead be related to the formation of suspended colloidal phases 

with an average diameter < 100 nm, passing unfiltered during the sampling process. However, this is 

not supported by the current observations and the literature data. In fact, the solubility data at T = 80 °C 

show a linear trend of log[Nd] with pHm (log[Nd]/pHm ~ - 3.0) whereas, usually, the metal ion 

concentration in the colloidal fraction is expected to be mostly pHm independent. In addition, Wood et 

al. [3] achieved the separation of the solid phases by using 0.2 µm pore-size PVDF filters, similarly to 

the one used in the present work. In the previous contribution by Rao et al. [4], the separation of the 

solid phases in experiments at T = 90 °C was achieved by centrifugating the samples at 2000 g, 20 min, 

90 °C, followed by pipetting of the supernatants. As discussed by Neck and co-workers [2], the 

separation of potential colloidal particles with a diameter of about 10 – 50 nm cannot be achieved by 

regular centrifugation, but it requires ultracentrifugation / ultrafiltration procedures. This 

notwithstanding, for samples at T = 25 °C Rao et al. also compared the Nd concentrations of ultra-

filtered (1.8 nm pore size) and unfiltered samples. The concentrations of Nd at pHm < 7.5 were 

reproducible in the two sets. At pHm > 8 a slightly higher Nd concentration in unfiltered samples, with 

respect to the filtered ones, was observed, suggesting the presence of possible colloidal fractions. Given 

the low Nd concentration at pHm > 8 ([Nd] = ~10-8 m), the samples collected in more acidic conditions 

were not affected by the presence of colloids, anyhow. 

Another possible explanation is an alteration of the initial Nd(OH)3(cr) when equilibrating at T = 55 or 

80 °C. On this regard, in both the previous contributions by Wood et al. [3] and Rao et al. [4], a 

characterization of the solid phases collected at the end of the solubility experiments was not conducted 
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or it is not reported in the publications. Wood et al. indicated that previous studies already showed that 

the Nd(OH)3(cr) solid to be the stable phase in the Nd-O-H system from room temperature, up to ~ 800 

°C, above which it transformed to NdOOH [6]. In the present work, the results of the post-experiment 

analysis of the solid phases equilibrated in dilute NaCl media (0.1, 0.5 m), discussed in the next section, 

consistently indicate that Nd(OH)3(cr) is a stable phase up to T = 80 °C. 

 

 

4.1.2 Characterization of the solid phases 

 

The TGA analysis of the Nd(OH)3(s) solid after its preparation (Figure 2a) is consistent with the 

expected stoichiometry. An overall weight loos of 9% was observed in the temperature range 210 – 550 

°C, consistent with the decomposition reaction (1). The TGA diagrams suggest the reaction to occur in 

two steps, with formation of NdO(OH)(s) at T = 210 – 375 °C (1a), decomposing to Nd2O3(s) at T = 375 

– 550 °C (1b). The percentage weight loss of the solid and the trend of the decompositions as function 

of temperature is consistent with the analogous analysis conducted by Wood et al. on the same initial 

material [3].  

Nd(OH)3(s)  0.5 Nd2O3(s) + 1.5 H2O(g) T = 210 – 550 °C    (1) 

Nd(OH)3(s)  NdO(OH)(s) + H2O(g)   T = 210 – 375 °C    (1a) 

NdO(OH)(s)  0.5 Nd2O3(s) + 0.5 H2O(g) T = 375 – 550 °C    (1b) 
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Figure 2. Thermo-Gravimetric Analaysis (TGA) diagrams of (a) Nd(OH)3(s) after preparation; (b) 

material equilibrated in NaCl 5.6 m, T = 80 °C, pHm = 7.5, transformed into a solid consistent with the 

stoichiometry Nd(OH)2Cl(s) (XRD characterization in Figure 3). 

 

Figure 3 shows the XRD spectra of the solid phases isolated before (a) and after the solubility 

experiments at T = 80 °C (b – e). Reference XRD patterns of well-characterized solid phases are shown 

for comparison (Nd(OH)3(cr), JSPD file 70-0215 [7], Nd(OH)2Cl(cr), JSPD file 72-1812 [8]).  
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Figure 3. Bottom, left: XRD patterns of known solid phases Nd(OH)3(cr) (PDF file n. 70-0215 [7]) and 

of Nd(OH)2Cl(cr) (PDF file n. 72-1812 [8]). (a) Initial material, characterized as Nd(OH)3(s); (b) 

Nd(OH)3(s) equilibrated in [NaCl] = 0.10 m, T = 80 °C, pHm 8.2; (c) Nd(OH)3(s) equilibrated in [NaCl] 

= 0.51 m, T = 80 °C, pHm 8.3; (d) Nd(OH)3(s) equilibrated in [NaCl] = 5.6 m, T = 80 °C, pHm 8.5; (e) 

Nd(OH)3(s) equilibrated in [NaCl] = 0.10m, T = 80 °C, pHm 7.5. 

 

Results indicate that the starting Nd(OH)3(s) material is stable in [NaCl] = 0.10 and 051 m in all 

equilibration conditions at elevated temperatures. XRD patterns of these solid phases are consistent with 

that of the initial material and of the reference Nd(OH)3(s). In solutions with [NaCl] = 0.10 and 051 m 

at T = 25, 55 °C the initial material also proved stable over time, consistently with the results from 

previous publications [2, 9]. In solutions with [NaCl] = 5.6 m, T = 80 °C, pHm = 8.5 the initial material 

also turned out to be stable. At lower pHm, a solid phase transformation was observed. The pattern of 

the transformed material (Figure 3e) is consistent with that of the ternary Nd(OH)2Cl(cr) [8] (Figure 3, 

red). A TGA analysis of the transformed solid (Figure 2b) also suggests this stoichiometry. A single-

step decomposition was observed in the temperature range 290 – 500 °C, characterized by a weight loss 

of 8.5 % of the initial material, consistently with the decomposition reaction (2) 

Nd(OH)2Cl(s)  NdOCl(s) + H2O(g)        (2) 

(e) Nd137 NaCl 5.6 m T = 80 oC pHm = 7.5

10 15 20 25 30 35 40 45 50 55 60

Nd(OH)2Cl(s) PDF file n. 72-1812

Nd(OH)3(s) PDF file n. 70-0215

2 , deg.

(d) Nd8 NaCl 5.6 m T = 80 oC pHm = 8.5

(b) Nd2 NaCl 0.10 m T = 80 oC pHm = 8.2 (c) Nd5 NaCl 0.51 m T = 80 oC pHm = 8.3

15 20 25 30 35 40 45 50 55 60

2 , deg.

(a) initial Nd(OH)3(cr) material
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In a recent work, a similar solid phase transformation was observed to occur at room temperature in 

concentrated brine systems with [Mg2+] > 4.05 m, [Cl-] > 5.82 m [9, 10]. The transformation occurs 

according to the equilibrium (3), only in the presence of high chloride concentrations at pHm < 8.5. 

Nd(OH)3(s) + Cl–  Nd(OH)2Cl(s) + OH–       (3) 

The concentration of Nd(III) in solutions where the transformation of the solid phase occurred was 

markedly lower that the one of Nd(OH)3(s) based on the model by Neck et al. [2]. This suggests a control 

of the solubility by Nd(OH)2Cl(s) in these conditions. 

 

 

4.2 Impact of elevated temperature on Th(IV) solid phases and solubility 

 

4.2.1 Solubility experiments in the absence of carbonate 

 

Figures 4 and 5 show the experimentally measured solubility of Th(IV) hydrous oxide (freshly 

precipitated, or aged at T = 80 °C for t = 1, 2 and 4.5 months at pHm = 3 and 12.8). The figures also 

show the solubility curves corresponding to freshly precipitated, aged and crystalline ThO2 solid phases 

calculated using the thermodynamic selection in the NEA-TDB [11].
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Figure 4. Solubility of Th(IV) hydrous oxide: (a) freshly precipitated; (b) aged for 1 month at T = 80 °C 

and pHm = 3 and 12.8. All solubility experiments conducted in 0.1 M NaCl. Experimental solubility data 

reported in the literature for ThO2(am, hyd) in 0.1 M NaCl and NaClO4 systems appended for 

comparison [12, 13]. Solid, dotted and dashed lines correspond to the solubility curves for ThO2(am, 

hyd, fresh), ThO2(am, hyd, aged) and ThO2(cr) using thermodynamic data selected in the NEA-TDB 

[11]. 
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Figure 5. Solubility of Th(IV) hydrous oxide: (a) aged for 2 months at T = 80 °C and pHm = 3 and 12.8; 

(b) aged for 4.5 months at T = 80 °C and pHm = 3 and 12.8. All solubility experiments conducted in 

0.1 M NaCl. Experimental solubility data reported in the literature for ThO2(am, hyd) in 0.1 M NaCl 

and NaClO4 systems appended for comparison [14]. Solid, dotted and dashed lines correspond to the 

solubility curves for ThO2(am, hyd, fresh), ThO2(am, hyd, aged) and ThO2(cr) using thermodynamic 

data selected in the NEA-TDB [11]. 
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The experimental data on the freshly precipitated Th(IV) hydrous oxide agrees well with the solubility 

calculated for ThO2(am, hyd, fresh) using the thermodynamic data selected in the NEA-TDB. 

Experimental data are also in moderate agreement with previous studies reporting on the solubility of 

ThO2(am, hyd) at T = 25 °C in 0.1 M NaCl or NaClO4 [12, 13]. All aged Th(IV) solid phases show 

lower solubilities than ThO2(am, hyd, fresh), consistently with the increase in particle size / crystallinity 

observed by XRD. Solubility data obtained for the Th(IV) solid phase aged for two months at pHm = 3 

is also in good agreement with experimental data reported by Kobayashi and co-workers for a solid 

phase aged at T = 90 °C during 6-8 weeks (see Figure 5a) [14]. Note, however, that Kobayashi et al. 

followed a different ageing approach as used in this study – each independent solubility sample was 

aged at T = 90 °C at the target pH (ranging between ≈ 1.5 and ≈ 9), whereas in the present work the 

solid phase used in each solubility series was aged at a single pH. Because of the impact of pH in the 

ageing process (see also next paragraph), the different ageing approach followed in Kobayashi et al. and 

in this work may lead to differences in the solubility data, especially in the less acidic samples.  

Experimental data in Figure 4 and Figure 5 show that the solubility of the Th(IV) hydrous oxide slightly 

decreases with the ageing time at T = 80 °C. Unexpectedly, the pH at which the Th(IV) solid phase was 

aged has a strong effect on the solubility measured at T = 22 °C. Hence, the solid phases aged at pHm = 3 

show up to 2 orders of magnitude lower solubility than the solid phases aged at pHm = 12.8. This effect 

is reproduced for the solid phases aged during 1, 2 and 4.5 months. These observations are apparently 

in contradiction with the minor differences observed by XRD, TG-DTA and XPS for Th(IV) solid 

phases aged for different contact times and at different pH values. However, these results can be made 

consistent by claiming a solubility control established by a few monolayers of the ThO2(s, hyd) surface. 

Such few monolayers have a minor weight in bulk characterization methods (XRD, TG-DTA) but also 

in “surface-sensitive” methods like XPS, which provides average values of a ≈ 4 nm layer. This 

hypothesis is also in line with previous studies by Grambow, Vandenborre and co-workers [15, 16], who 

claimed that solubility measurements of ZrO2(s), ThO2(s) and UO2(s) are not representative of the bulk 

phase, but are rather controlled by surface processes of a few monolayers of the corresponding oxide. 

Although the starting materials used in these studies were crystalline oxides sintered at very high 

temperatures (400-1000 °C), the authors claimed that “solubility” of Th(IV) system was controlled by 

“ThOx(OH)y(H2O)z” present at the grain boundaries. 

 

4.2.2 Solubility experiments in the presence of carbonate 

Experimental solubility data at T = 22 and 80 °C determined in this work for the aged solid phase 

ThO2(ncr,hyd, t = 2 m, pHm = 12.8) in 0.1 M NaOH systems with 0.01 M ≤ [CO3
2-]tot ≤ 1.5 M are shown 

in Figure 6. The figure also shows solubility data at T = 22-25 °C previously reported by Altmaier et al. 

and Rai et al. under analogous carbonate concentrations [17-19]. Solid blue line in the figure corresponds 
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to thermodynamic calculations conducted for the solid phase ThO2(ncr, hyd, t = 2 m, pHm = 12.8) 

considering enthalpy data provided by Amphos21 in the context of the ThermAc project for the solid 

phase ThO2H2O(s) and the ternary Th(IV)-OH-CO3 complexes expected to dominate the Th(IV) 

aqueous speciation in the investigated carbonate systems. 

 

 

Figure 6. Solubility of the aged phase ThO2(ncr, hyd, t = 2 m, pH = 12.8) at T = 22 and 80 °C 

determined in this work in 0.1 M NaOH systems with 0.01 M ≤ [Na2CO3]tot ≤ 1.5 M. Experimental 

solubility data at T = 22-25 °C reported by Altmaier et al. [17] and Rai et al. [17-19] are appended for 

comparison. Solid lines correspond to thermodynamic calculations at T = 22 and 80 °C using 

thermodynamic data derived in this work, selected in the NEA-TDB and estimated by Amphos21 (see 

text). 

 

Experimental data determined in this work show a large dispersion, and only data at the highest 

carbonate concentration show a clear increase in the solubility, both at T = 22 and 80 °C. Although not 

evident because of the data dispersion, solubility data at T = 22 °C are slightly lower than solubility data 

previously reported by Altmaier et al. [17]). This is in agreement with the lower solubility observed in 

this work for a solid phase previously aged for two months at T = 80 °C, ThO2(ncr, hyd, t = 2 m, 

pHm = 12.8). At high [Na2CO3]tot, slightly higher Th concentrations are measured at T = 80 °C compared 

to solubility data at T = 22 °C. This trend is consistent with thermodynamic calculations performed 

using the estimated enthalpy values. 
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Experimental data obtained in this work indicate that although complexation with carbonate is enhanced 

by temperature, this effect is mostly compensated by the increased crystallinity of ThO2(s, hyd) with 

the corresponding decrease in solubility. Experimental data determined in this work do not allow 

deriving thermodynamic data for the Th(IV)-OH-CO3 system at elevated T, but enthalpy estimates in 

combination with equilibrium constants selected in the NEA-TDB can be used to assess upper solubility 

limits in alkaline systems in the presence of carbonate. 

 

4.2.2 Solid phase characterization by powder XRD 

The powder diffractograms collected for the solid phases investigated within this study are shown in 

Figure 7. 

 

 

Figure 7. Diffractograms of the Th(IV) solid phases synthesized in this work and equilibrated at 

T = 80 °C and pHc(25 °C) = 3 and 12.8, except for sample “ThO2(freshly precipitated)” measured 2 

days after precipitation. Vertical dashed lines refer to the ThO2(cr) reference (PDF 75-0052).
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An XRD pattern corresponding to a rather amorphous material is observed for the freshly precipitated 

Th(IV) solid phase. This is in line with previous observations reported in the literature for freshly 

precipitated Th(IV) hydrous oxide [14]. In all other cases, XRD patterns show broad peaks with well-

defined 2Θ positions, reflecting a higher degree of crystallinity for the Th(IV) aged samples. No 

significant differences are visually observed in the diffractograms of Th(IV) solid phases aged for 

different times or at different pH values. The peak positions in the XRD of the aged samples are in good 

agreement with reference data reported for ThO2(cr) in the JCPDS database, i.e. with main reflections 

at 2ϴ = 27.6, 32.0, 45.9, 54.4 and 57.0. Good agreement is also obtained with the peak positions in the 

XRD reported by Kobayashi and co-workers for Th(IV) solid phases aged at T = 90 °C for 3-6 weeks 

in 0.1-2.0 M NaClO4 and 0.1-3.0 M NaCl [14].  

The Scherrer analysis is used to gain insight on the particle size of the solid phases on the basis of the 

evaluation of the full width at half maximum (FWHM) intensity of the XRD peaks. The results of this 

analysis are summarized in Table 1. 

 

Table 1. Scherrer analysis of selected Th(IV) solid phases investigated in this work. 

Sample particle size/nm* 

ThO2(freshly precipitated) 1.5 

ThO2(aged, t = 1 month, pHm = 3) 4.4 

ThO2(aged, t = 1 month, pHm = 12.8) 4.1 

ThO2(aged, t = 2 months, pHm = 3) 4.7 

ThO2(aged, t = 2 months, pHm = 12.8) 4.1 

ThO2(aged, t = 4.5 months, pHm = 3) 4.8 

ThO2(aged, t = 4.5 months, pHm = 12.8) n.d. 

ThO2(aged, t = 5.5 months, pHm = 3) 4.6 

ThO2(aged, t = 5.5 months, pHm = 12.8) 4.1 

ThO2(12 years, pHm = 8-9) 4.9 

n.d.: not determined due to the poor quality of the diffractogram; * uncertainty estimated as ± 0.5 nm. 

 

A large difference between the particle size of freshly precipitated and aged solid phases is observed. In 

addition to that, data reported in Table 1 hint to a slight increase in the particle size with aging at pHm = 3 

compared to the samples aged at pHm = 12.8 for the same period. This behaviour might be related to the 

higher solubility of Th(IV) at pHm = 3 (≈ 10-2 M, calculated at T = 25 °C for ThO2(am,hyd,aged)) than 

at pHm = 12.8 (≈ 10-8 M), which is expected to trigger a faster increase in the particle size through 

enhanced dissolution and precipitation reactions.  
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Using also the Scherrer analysis, Kobayashi and co-workers reported particle sizes between 3.1 and 4 

nm for selected Th(IV) solid phases aged at T = 90 °C [14]. Note, however, that the strategy followed 

by these authors was different than the one considered in the present work. Hence, Kobayashi et al. 

equilibrated the Th(IV) solid phases at elevated temperature within a range of pHc values (1.2-9.4). 

Then, the samples were cooled down, and solubility measurements were performed at T = 25 °C without 

further modification of the pHc. The values of particle size indicated above were measured for Th(IV) 

solid phases aged at 5.6 ≤ pHc ≤ 9.4 (Figure 4 in [14]), but no XRD were collected for solid phases aged 

in more acidic conditions. 

 

 

4.3 Transformation of Np(V) solid phases at elevanted temperatures 

 

4.3.1 Solubility measurements 

 

The aqueous phase of the Np samples are analyzed for [Np], pHm, and Eh before and after 30 days of 

heating. As shown in Table 2, pHm values did not significantly change after equilibration at T = 80 oC 

due to the high OH− content. In both cases, measured Eh values have slightly increased after heating, 

presumably indicating that Np(VI) had partially formed during heating. Indeed, the measured pe + pHm 

values are located within the stability field of Np(VI), cf. Pourbaix diagrams for Np in the literature [20]. 

The total Np concentrations in the samples after 30 days of heating are displayed in Figure 8 in 

comparison to the calculated solubility of NpO2OH(am,fresh) using the computational code PHREEQC 

[21] with ThermoChimie database (v.9a) [22]. The experimental solubility data obtained in 0.1 M NaOH 

are relatively consistent with the theoretical values in 0.1 m. 
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Figure 8. Experimental Np(V) solubility in (a) 0.1 m NaOH and (b) 5.6 m NaCl solutions determined 

after 30 days of heating period in comparison to the solubility data of NpO2OH(am) in 5 M NaCl 

reported by [23, 24]. Solid lines represent the calculated solubility of NpO2(OH)(am,fresh).  

 

This indicates that the initial NpO2OH(am,fresh) controlled the Np(V) solubility after the heating period 

in these samples, even though partial transformation is evident in these samples based on results 

discussed in section 4.3.2. Considerably lower solubility compared to the calculated level of 

NpO2OH(am,fresh) is observed for sample in 5.6 m NaCl under hyper-alkaline condition, which can be 

explained by the complete transformation of initial NpO2OH(am,fresh) into more stable Np(V) solid 

phases. 

 

 

4.3.2 Solid phase characterization 

 

After 30 days of heating, partial or complete transformation of the initial greenish NpO2OH(am,fresh) 

into violet, crystalline Np(V) phase takes place in 0.1 m NaOH and 5.6 m NaCl with pHm ≈ 13. 

Additional analysis by XRD, SEM-EDS, and XPS are performed with the violet transformation products 

as shown in Table 2. 
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Table 2. Characteristics of transformed Np(V) solid phases tempered at T = 80 oC for 30 days.  

Sample 
Background 

solution 

pHm Eh (mV) 

Color of solid 
[Np]aq 

(mol/l) 

Np : Na ratio 

Initial Final Initial Final 
ICP-

MS/OES 

SEM-

EDS 
XPS 

3 0.1 m NaCl 12.9 13.0 +82 +203 Violet 3.5 × 10-5 1 : 0.6 1 : 0.4 1 : 0.6 

5 5.6 m NaCl 13.0 13.1 -18 +132 Violet 1.8 × 10-8 1 : 0.9 1 : 0.7 1 : 1.3 

 

The patterns of the two Np(V) solids studied by powder XRD analysis are displayed in Figure 9. In 

comparison to the amorphous NpO2OH(am,fresh) starting material, the tempered solid phases show 

sharp and well localized peaks. This confirms transformation into crystalline Np(V) compounds upon 

heating. 

 

 

Figure 9. Powder X-ray diffraction patterns of the transformed Np(V) solid phases in comparison to the 

one for NpO2OH(am,fresh) [25].  

 

SEM pictures of the investigated Np(V) transformation products are displayed in Figure 10. Both 

samples show relatively well-defined crystalline morphologies, as expected by the characteristic powder 

XRD patterns. 
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Figure 10. SEM images of the transformed Np(V) solid phases. (a) 0.1 m NaOH; (b) 5.6 m NaCl, pHm 

= 13.0. 

 

Formation of large platelet-like crystals is identified for the sample tempered at 0.1 m NaOH. The 

experimental Np : Na ratio of 1 : 0.6 determined by ICP-MS/OES agrees well the SEM-EDS results (1 

: 0.4). For the system with 5.6 m NaCl and pHm = 13.1, the transformed Np(V) solid phase has a needle-

like morphology, providing Np : Na ratios of 1 : 0.9 (ICP-MS/OES) and 1 : 0.7 (SEM-EDS). Petrov et 

al. [24] observed the transformation of initial NpO2OH(am,fresh) in 5.6 m NaCl at room temperature 

into a crystalline Na-Np(V)-O(H) solid phase which shows very similar morphology and Na : Np ratio. 

The powder XRD pattern reported by Petrov et al. matches the one reported for Na[Np(V)O2(OH)2] 

[26], but mismatches the one of the present work. 

Further detailed information on the oxidation state and structural characteristics of the transformed Np 

solid phases are obtained from the XPS. The Np4f and O1s XPS peaks of the transformed Np(V) phases 

are displayed in Figure 11. The basic lines of the Np4f doublet directly related to the spin orbit splitting 

(4f5/2 and 4f7/2) are similar to other reference Np solid phases [27-29]. 

 

Figure 11. XPS spectra of (a) Np4f- and (b) O1s-signal of the investigated Np solid phases. 
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Pentavalent Np as predominant oxidation state in the transformed solid phases is confirmed from the 

binding energy relevant to Np4f. As listed in Table 3, the average binding energy distance, ΔEsat., 

between the Np4f7/2 basic line and its satellite is determined to be 8.6 eV for the transformed Np solid 

phases. This is in good agreement with reported data for other Np(V) compounds and clearly hints to 

the presence of pentavalent Np(V), especially as tetravalent or hexavalent Np solid phases show 

significantly different values (ΔEsat. = 7.0 eV for Np(IV)O2 and ΔEsat. = 3.5 eV for Cs2Np(VI)O2Cl4, 

respectively).  

 

Table 3. XPS binding energies of the transformed Np(V) solid phases. 

Solids 
Binding energy (eV) 

Ref. 
Np4f7/2 Np4f5/2 ΔEsat.(Np4f7/2) 

     

0.1 m NaOH 402.7 414.5 8.6 p.w. 

5.61 m NaCl pHm 13 402.9 414.4 8.6 p.w. 

Np(IV)O2 402.5 414.3 7.0 [27] 

RbNp(V)O2(NO3)2·2H2O 403.6 415.3 9.2 [29] 

Cs2Np(V)O2(OAc)3 403.0 414.6 9.2 [29] 

Cs3Np(V)O2Cl4 403.4 415.2 9.4 [28] 

Cs2Np(VI)O2Cl4 404.6 416.4 3.5 [28] 

 

 

 

4.4 Np(IV)/Np(V) redox behavior 

 

In the AQDS/AH2QDS redox system, measured pHm values remained at a constant level in most of the 

samples within the 316 days of investigation. The maximum deviation between initial and final Eh values 

within the timeframe of the experiment was less than 90 mV for all cases. As shown in Figure 12a, 

quantitative decrease of the initial Np(V) concentration takes place within 1 day for all AH2QDS/AQDS 

samples. As the experimental Eh values were quite negative and clearly within the stability of Np(IV) in 

all cases, this observation can be explained by the quantitative reduction of initial Np(V) to sparingly 

soluble NpO2(am,hyd) according to equation (4): 

 

NpO2
+ + e‒ ↔ NpO2(am,hyd)         (4) 
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Table 4. The pHm and Eh values of the redox system with Np(IV)/Np(V) equilibrated at T = 80 oC. 

 

Redox system pH buffer 
pHm Eh (mV)a 

Initial Final Initial Final 

AQDS 

MES 5.5 5.5 ‒ 149 ‒ (134 ± 9) 

HEPES 6.6 6.7 ‒ 221 ‒ (158 ± 19) 

CHES 8.0 8.0 ‒ 287 ‒ (211 ± 2) 

NaOH 9.9 10.0 ‒ 329 ‒ (253 ± 16) 

Fe powder 

HEPES 6.6 6.6 ‒ 163 ‒ (113 ± 7) 

CHES 8.1 8.1 ‒ 279 ‒ (239 ± 18) 

NaOH 10.1 10.2 ‒ 65 ‒ (345 ± 1) 

SnCl2 

MES 5.6 5.7 ‒ 149 ‒ (166 ± 3) 

HEPES 6.8 6.8 ‒ 263 ‒ (280 ± 4) 

CHES 8.2 8.2 ‒ 298 ‒ (418 ± 4) 

NaOH 9.9 10.0 ‒ 591 ‒ (627 ± 8) 

Hydroquinone 

MES 5.5 5.6 89 19 ± 2 

HEPES 6.6 6.6 57 ‒ (13 ± 8) 

CHES 8.1 8.1 ‒ 47 ‒ (115 ± 3) 

NaOH 9.9 10.0 ‒ 234 ‒ (253 ± 5) 

Fe(II)/Fe(III) 

MES 5.0 5.0 163 26 ± 8 

HEPES 6.2 6.2 135 ‒ (6 ± 1) 

CHES 8.0 8.1 186 ‒ (80 ± 1) 

NaOH 9.8 10.0 23 ‒ (188 ± 2) 

a. compensated to standard hydrogen electrode 

 

 

According to the equilibrium reaction (4), the reduction of initial aqueous NpO2
+ to solid NpO2(am,hyd) 

becomes more favorable at lower Eh values. The reduction rate, empirically defined in terms of the slope 

of log [Np(V)] versus reaction time, can provide insight into the reaction kinetics for given system. 

As the first sampling after 1 day already indicated complete reduction of the initial Np(V), only an 

upper-limit value for the reduction rate can be estimated for the AQDS system. Assuming a pseudo first-

order rate law for the Np(V) reduction by AH2QDS (as the amount of reducing reagent in the system is 

much higher than that of Np(V), this assumption is justified) with the empirical rate law 

 

[Np]tot(t) = [Np]tot(0) · exp(‒ k·t)        (5) 

 

where [Np]tot(t) is the total aqueous Np concentration measured as a function of time t and k represents 

empirical rate constant, k ≥  ≈ 3 ± 0.5 day-1 can be obtained.  
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Figure 12. Total aqueous Np concentration measured as a function of reaction time at T = 80 oC with 

(a) AH2QDS/AQDS, (b) Fe powder, (c) SnCl2 redox system at various pHm conditions. Dashed line 

indicates detection limit of quantification analysis. 

 

 

Similar reducing tendency of Np(V) towards Np(IV) is observed for the redox systems with Fe powder 

and SnCl2. The difference between the initial and final Eh values is found to be ΔEh ≤ 75 mV, except for 

Fe powder system at pHm = 6.7 (ΔEh = 112 mV). Figure 12b shows the results obtained in the Fe powder 

redox system. In all samples (pHm = 6.6 to 10.2), initial Np(V) is quantitatively reduced within 1 to 25 

days. The reduction is the slower the higher pHm (and, likewise, the lower Eh) is. This is in contrast to 

the results obtained for the other redox systems, and might be explained by a specific passivation of the 

iron powder at greater alkalinity. In SnCl2 containing solutions with pHm 5.7 to 10.0 and experimental 

redox potentials of ‒ (166 ± 3) mV to ‒ (627 ± 8) mV, initial Np(V) was quantitatively reduced within 

maximum 25 days. In spite of showing the lowest redox milieu pe+pHm of all investigated systems, the 

reduction rates were at an average level. This may be due to the fact that the initial SnCl2 is mainly 

present as SnO∙xH2O(s) under the experimental conditions so that the equilibrium concentration of 

dissolved Sn(II)(aq), that can be considered as the actual reducing agent, is rather low. 

In hydroquinone samples with pHm ≥ 8.1 and in Fe(II)/Fe(III) buffered solutions with pHm ≥ 6.2, more 

than 99% of the initial Np(V) is reduced within 35 days. Significantly slower reduction rates are 

observed for the hydroquinone and Fe(II)/Fe(III) samples equilibrated at lower pHm values, see Figure 

13. Particularly at the respective lowest pHm values, reduction of initial Np(V) to Np(IV) was still 

ongoing at the termination of the experiment at t = 316 days. The sluggish Np(V) reduction rates in these 
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systems correlate with relative positive redox potentials (Eh = 19 ± 2 mV and 26 ± 8 mV for 

hydroquinone and Fe(II)/Fe(III), resp.) which are the most positive values of all investigated samples. 

 

Figure 13. Total aqueous Np concentration measured as a function of reaction time at T = 80 oC with 

(a) hydroquinone and (b) Fe(II)/Fe(III) redox system at various pHm conditions. Dashed line represents 

detection limit of quantification analysis. 

 

 

4.5 Solubility and hydrolysis of U(VI) at elevated temperature 

 

4.5.1 Solubility experiments 

 

Figure 14 shows the solubility data determined in this work for UO3·2H2O(cr) and Na2U2O7·H2O(cr) in 

[NaCl] = 0.1, 0.51 and 5.6 m solutions at T = 25, 55 and 80 °C. The figure shows also solubility data 

determined in 0.51 m NaCl at T = 22 and 80 °C, as well as data reported in Altmaier et al. at T = 22 °C 

in 0.51 and 5.61 m NaCl solutions [30]. 
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Figure 14. Solubility of UO3·2H2O(cr) and Na2U2O7·H2O(cr) in [NaCl] = 0.1, 0.51 and 5.6 m at T = 

25, 55, 80 °C.  Solid thick lines correspond to the solubility at T = 25 °C calculated using the SIT model. 

Dashed lines indicate the contribution to the solubility of the UO2(OH)4
2- (1,4) species. Data reported 

by Endrizzi et al. and Altmaier et al. are included for comparison [30, 31]. 

 

The solubility at room temperature of UO3∙2H2O(cr) in acidic 0.51 m NaCl compares well with the one 

determined by Altmaier et al. in the same conditions [30]. The solubility of the same material measured 

at T = 55 and 80 °C is lower (up to 1 order of magnitude at T = 80 °C) with respect to the corresponding 

one measured at room temperature at the same pHm. Since the starting material used in the solubility 

experiments at 25, 55 and 80 °C had been already equilibrated at 80 °C, we reasonably exclude that this 

effect is related to an increased crystallinity of the initial material, kinetically favored at the higher 

temperatures. A good agreement is observed for the experimental datasets available for the solubility of 

metaschoepite and sodium uranate in [NaCl] = 0.51 m at T = 80 °C. Reproducible trends of log [U] as 

a function of pHm (with a slope of ~ – 2) were also consistently observed in the acidic to near neutral 
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pHm range. In the near-neutral to moderately alkaline pHm range the solubility of uranium is ~10-8 m in 

[NaCl] = 0.10 and 0.51 m and mostly independent of the pHm. The measured uranium concentration in 

this pHm range was affected by relatively high uncertainties. This is due to the very low uranium 

concentration, close or lower than the detection limit of the analytical technique, after the required 

dilution of the sampled volume. For the same reason, meaningful solubility data could not be collected 

for most batches prepared with [NaCl] = 5.6 m in this pHm range. Due to these limitations, a clear effect 

of the temperature on the solubility of uranium in the near-neutral to moderately alkaline pHm range 

could not be observed.  

The solubility of Na2U2O7H2O(cr) in the alkaline and hyper-alkaline range increases with pHm with 

well-defined slope of +1 (log [U] vs pHm). This trend is consistent through the three temperatures 

investigated, with a significant enhancement of the solubility of Na2U2O7H2O(cr) observed as an effect 

of temperature. The concentrations of uranium in the contacting solutions at T = 55 and 80 °C are higher 

than the corresponding ones at room temperature by means of 1.3 to 1.7 and 2.1 to 2.5 orders of 

magnitude, respectively (Figure 14). 

At T = 25 °C, the solubility of Na2U2O7∙H2O(cr) in 0.51 m NaCl is systematically lower (~0.3 log [U] 

units) than the one determined by Altmaier et al. for the same solid [30]. In the present work, the batch 

of Na2U2O7·H2O(cr) was preliminarily equilibrated in solution at T = 80 °C prior to be used in the 

solubility experiments at room temperature, whereas in the work by Altmaier et al. the solid phase was 

prepared and used at room temperature. The observed decrease of solubility of Na2U2O7·H2O(cr) is 

likely related to an increase of crystallinity of the initial material as an effect of temperature.  

 

4.5.2 Solid phase characterization 

 

Metaschoepite 

Figure 15b shows the XRD spectrum of UO3∙2H2O(cr) prepared and pre-equilibrated at T = 80 °C. The 

diffraction pattern is consistent with the one of the same material prepared at room temperature and not 

equilibrated at elevated temperatures. The spectrum shows the characteristic pattern of the reference 

metaschoepite (Fig. 15a, red, JSPD File n. 43-0364 [32]), with main features at 2 = 12.1, 24.2, 24.8, 

25.5 deg.  

Figure 16 shows the thermal decomposition of UO3∙2H2O(cr) measured by TGA analysis. The solid 

decomposed with a percentage weight loss of 10.9 – 12.2 % in the temperature range 100 – 675 °C, 

consistently with the expected loss of two water molecules.  
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Elementary analyses conducted with ICP-OES and with SEM-EDS excluded the presence of Na in the 

material initially prepared. SEM analyses (Figure 17) revealed the expected platelet-like structure of the 

crystallites, with an average diameter of about 0.5 – 3 μm. 

Figure 15. Powder XRD patterns of UO3·2H2O(cr) investigated in the p.w. (a) reference patterns of 

UO3·2H2O(cr) (red, JSPD file 43-0364 [32]), Na(UO2)O(OH)(cr) (blue, JSPD file 50-1586 [33]), Na2-

U3O·10H2O (green, JSPD file 41-0840 [34]). (b) UO3·2H2O(cr) before solubility experiments (pre-

equilibrated at T = 80 °C). (c) UO3·2H2O(cr) equilibrated 260 days, T = 80 °C, [NaCl] = 0.1 m, pHm 

= 4.4. (d) UO3·2H2O(cr) equilibrated 260 days, T = 25 °C, [NaCl] = 0.5 m, pHm = 4.5. (e) UO3·2H2O(cr) 

equilibrated 260 days, T = 80 °C, [NaCl] = 0.5 m, pHm = 4.9. (f) UO3·2H2O(cr) equilibrated 260 days, 

T = 80 °C, [NaCl] = 5.6 m, pHm = 4.9. 
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Figure 16. Thermogravimetric diagram of UO3·2H2O(cr) (left) and Na2U2O7·H2O(cr) (right). 

 

(a) (b) (c) (d) 

Figure 17. SEM images of UO3·2H2O(cr) (a) after preparation; (b) aged in [NaCl] = 0.10 m, T = 80 

°C, pHm = 4.4; (c) aged in [NaCl] = 0.51 m, T = 80 °C, pHm = 4.3; (d) aged in [NaCl] = 5.6  m, T = 

80 °C, pHm = 4.9. 

 

Results of the characterization of the solid phases of UO3·2H2O(cr) isolated after the solubility 

experiments indicate that the starting UO3·2H2O(cr) material was stable in all solutions equilibrated at 

T = 25 °C. XRD confirmed the absence of of sodium-uranate-like phases (Figure 15, c, e, g). ICP-OES 

elementary analyses showed no inclusion of Na in the solid phase. Similarily, UO3·2H2O(cr) was shown 

to be thermodynamically stable, when equilibrated in the presence of [NaCl] = 0.10 m, up to T = 80 °C 

(Figure 15d).  

A partial solid phase transformation of metaschoepite into a sodium uranate-like material was 

conversely observed in batches of UO3∙2H2O(cr) contacted with solutions [NaCl] = 0.51 m or higher, at 

T = 55, 80 °C at pHm = 4.4 and above. Sodium uranate-like solid phases with Na:U molar ratios lower 

than 1 have also previously reported in the literature [35], including the sodium triuranate whose XRD 

pattern is shown in Figure 15a [34]. Figure 15 shows XRD spectra of selected samples of UO3∙2H2O(s) 
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collected at the end of the solubility experiments conducted at T = 80 °C in acidic conditions (pHm = 4.2 

– 4.9), in [NaCl] = 0.10 m (c), 0.51 m (e) and 5.6 m (f). The values of the Na : U molar ratio, measured 

through elementary analyses (ICP-OES and SEM-EDX) are also reported in the same figure.  

The batches of UO3·2H2O(cr) equilibrated in [NaCl] = 0.10 m at T = 25, 55, 80 °C show all, invariably, 

an absence or a negligible inclusion of Na (Na:U = 0.07 at T = 80 °C). The XRD spectra of these phases 

do not show any XRD feature corresponding to sodium uranate (“clarkeite”, reference JSPD file n. 50-

1586 [33] in Figure 15a, blue) or of other known sodium uranate-like phases (Na2U3O10·H2O, ref. JSPD 

file n. 41-0840 [34] in Figure 15a, green). The XRD spectrum of the material collected from experiments 

in 0.51 m NaCl, T = 80 °C (Figure 15e) shows indications of a possible solid phase transformation: two 

distinct peaks at 2 = 15.3, 31.0 deg. could be assigned to a sodium-uranate-like phase, although not 

matching exactly the peaks of the reference sodium uranate (2 = 15.0, 30.3, 33.0 deg., Figure 15a, 

blue). The peak at 2 = 12.1, assigned to metaschoepite, was instead not distinctly detected. ICP-OES 

and EDS elementary analyses indicated a Na:U = 0.4-0.5 molar ratio. The results suggest that a partial 

solid phase transformation of metaschoepite occurred, leading to a solid phase, different from 

metaschoepite and sodium uranate and composed by a non-stoichiometric Na : U ratio according to 

((NaO)0.4(UO2)(OH)1.6∙(0.6)H2O(s)).  

The batch of metaschoepite equilibrated in [NaCl] = 5.6 m (Figure 15f) showed a XRD spectrum very 

similar to the one of the solid equilibrated in [NaCl] = 0.51 m (Figure 15e), and the same Na : U molar 

ratio (0.4-0.5) within uncertainties. This result suggests that the same alteration product was possibly 

obtained at the end of the experiments in [NaCl] = 0.51 and 5.6 m, hinting that the transformation of 

metaschoepite at the end of the solubility experiments in these two media was possibly complete, and 

the transformed phase to be stable in the equilibration condition. 

 

Figure 18 shows the emission spectra at near liquid He temperature (6K) of the metashoepite and 

transformed metashoepite solid phases of this experiment. Spectral feature typical from uranyl 

compounds can be observed in both spectra including vibronic bands with specific peak spacing, or peak 

maxima. In both cases the positions of the spectral bands are red-shifted as compared to those from 

carbonates or phosphate uranyl minerals [36, 37]. The mentioned spacing between the vibronic bands 

corresponds to the symmetric stretching frequency of the O = U= O moiety. This frequency is inversely 

correlated to the strength of the coordination of U(VI) with the coordination ligand in the equatorial 

plane. The ν1 values measured here in both metaschoepite phases are between 720 -780 cm-1. Usually, 

low symmetric stretching frequency values are associated to minerals of uranyl silicate and 

oxyhydroxide. This fact can be explained by the stronger ionic interaction of uranyl (hard acid) with 

anions with stronger basicity (larger pKa values) [36]. A bathochromic shift of ~5 nm in the position of 

the first-peak maxima is also observed for the transformed metaschoepite. According to Gorobets et al. 
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[38], an increase of the basicity of the molecules in the uranyl solvation or coordination sphere could 

induce a shift of the luminescence spectrum to low frequencies. The reason is a stronger chemical bond 

of the uranium atom with the ligand and a weakening of the stretching in the U=O bond.  

Luminescence lifetimes were also calculated for the analyzed metaschoepite phases, obtaining in both 

cases a bi-exponential decay. In the case of metaschoepite the two components of the decay are: (15.4 

± 0.3) µs and (81.8 ± 0.6) µs. For the transformed metaschoepite both times are shorter (5.6 ± 0.8) µs 

and (63.2 ± 35.2) µs. This effect has been already observed for uranyl minerals at low temperature K 

[36, 37, 39, 40]. In the paper by Volodko et al. the bi-exponential decay is explained as a redistribution 

of energy occurring after excitation [39]. Perry and Brittain argue with the presence of two geometrically 

similar uranyl coordination environments [40]. 

 

Figure 18. Luminescence spectra of metaschoepite (solid line) and transformed metaschoepite (short 

dash dot line). Spectra measured at ~6 K, 1 µs delay,1 ms integration time,500 accumulations. Laser: 

λex = 266 nm; 600µJ/pulse. 

 

Sodium uranate 

Figure 19b shows the XRD spectrum of the starting material of sodium uranate. The diffraction pattern 

is consistent with the one of the reference Na2U2O7·H2O(cr) material (clarkeite, Figure 19a, JSPD file 

50-1586 [33]), with relevant peaks at 2 15.0, 26.4, 27.6, 30.4 deg. Elemental analyses conducted with 

ICP-OES indicated a 1:1 Na/U molar ratio in the solid phase.  
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Figure 19. Powder XRD patterns of Na2U2O7·H2O(cr) investigated in the p.w. (a) blue: reference 

patterns of Na(UO2)O(OH)(cr) (JSPD file 50-1586 [33]); green: reference patterns of Na2U3O10·H2O(s) 

(JSPD file 41-0840 [34]). (b) Na2U2O7·H2O(cr) before solubility experiments. Pre-equilibrated at T = 

80 °C. (c) Na2U2O7·H2O(cr) equilibrated 292 days, T = 80 °C, [NaCl] = 0.1 m, pHm = 8.2. (d) 

Na2U2O7·H2O(cr) equilibrated 292 days, T = 80 °C, [NaCl] = 0.1 m, pHm = 12.0. (e) Na2U2O7·H2O(cr) 

equilibrated 268 days, T = 80 °C, [NaCl] = 0.1 m, pHm = 8.3. (f) Na2U2O7·H2O(cr) equilibrated 292 

days, T = 80 °C, [NaCl] = 0.5 m, pHm = 12.0. 

 

Figure 16 shows the TGA diagram of Na2U2O7∙H2O(cr). The solid decomposed with a weight loss of 

2.5 -2.6 % in the temperature range 50 – 550 °C, consistent with the loss of 0.9 water molecules. A 

quantitative decomposition of Na2U2O7∙H2O(cr) should have been consistent with the release of 1 water 

molecules. However, a clear plateau was not reached at the end of the experiments, suggesting that the 

decomposition of Na2U2O7∙H2O(cr) with release of water was not quantitative, consistently with the 

observations in a previous study [41]. Elementary analyses conducted with ICP-OES and SEM-EDS 

indicated a 1:1 Na : U molar ratio and the absence of chloride in the solid. 
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Analyses of the solid phases of Na2U2O7∙H2O(cr) collected at the end of the solubility experiments 

confirmed that the initial material was thermodynamically stable in all the experimental conditions 

tested. Figure 19 shows selected XRD spectra of Na2U2O7∙H2O(cr) collected at the end of the solubility 

experiments in 0.10 m NaCl, T = 80 °C, at pHm = 8.2 (c) and pHm = 12.0 (d), 0.5 m NaCl, T = 80 °C, at 

pHm = 8.3 (e) and pHm = 11.2 (f). The XRD pattern of the solid phase in the figure matches the one of 

the initial material, as well as the Na:U stoichiometry (1:1). It is worth noticing that the spectra in Figure 

19d – f lack the relevant peaks at 2θ = 26.4, 27.6 assigned to Na2U2O7∙H2O(cr). The patterns are very 

similar to those already collected by Gorman-Lewis et al. for the same materials [42]. This is considered 

to be an artifact related to the method of preparation of the sample measured with XRD, which leads to 

a deposition of the sample powders on the sample holder according to a preferential orientation, rather 

than anisotropically. In particular, spectra (d – f) show an enhancement of the base peak at 2θ = 15.0, 

and of the other peaks close to the integer multiples of the base peak (2θ = 30.4, 47.0). 

 

4.5.3 Thermodynamic interpretation 

 

Based on the solubility data and the extensive solid phase characterization, a comprehensive 

thermodynamic model was derived including solubility constants for UO3·2H2O(cr) and 

Na2U2O7∙H2O(cr), as well as hydrolysis constants for the hydrolysis species forming in alkaline 

conditions, UO2(OH)3
– and UO2(OH)4

2–. The thermodynamic model includes also enthalpy data for 

Na2U2O7∙H2O(cr) and UO2(OH)4
2–, thus allowing solubility and speciation calculations at elevated 

temperatures in hyperalkaline systems. A detailed description of the thermodynamic model is provided 

in Endrizzi et al. (2018) and Endrizzi et al. (2019) [31, 43]. 

 

 

4.6 Solubility experiments with Ca-U(VI)-CO3(s) phases 

 

4.6.1 Solubility data 

 

Figure 20 shows the experimental U(VI) solubility data obtained in the three NaCl systems at T = 22 oC 

and 80 oC. Further detailed information regarding initial and final pHm along with the results of the 

chemical analysis for [U(VI)] and [Ca] contents in the aqueous solution are listed in Table 5. After 

attaining the equilibrium condition, relatively high concentrations of aqueous U(VI) are determined at 



 

 
A-49 

 

T = 22 oC in 0.03 m and 0.51 m NaCl solutions. However, significantly lower U(VI) solubilities are 

observed for the systems in 5.61 m NaCl solution at T = 22 oC, and all three systems equilibrated at 

elevated temperature condition. As shown in Table 5, significant shifts in pHm towards higher values 

are observed, in particular for the samples at T = 80 oC. According to Henry’s law, the partial pressure 

of CO2(g) in water is enhanced as temperature increases. Subsequent degassing of CO2(g) from the 

solution produces further consumption of protons for the compensation of hydrated carbon dioxide, 

inducing the increase in pHm. In contrast, no remarkable change in pHm is observed for solutions 

equilibrated at T = 22 oC, seemingly representing that the CO2(g) equilibrium in the solution is relatively 

well maintained during the equilibrium reaction. 

 

 

Figure 20. Experimental U(VI) solubility of initial Ca2UO2(CO3)3·10H2O(cr) equilibrated in ca. 0.03 

m, 0.51 m, and 5.61 m NaCl solutions at T = 22 oC and 80 oC. Dashed lines indicate the solubility curves 

predicted at room temperature according to the solubility products of Ca2UO2(CO3)3·10H2O(cr) and 

Na2CaUO2(CO3)3·6H2O(cr).  

 

Relatively high concentrations of both U(VI) and Ca are observed for the systems with Im ≤ 0.51 m 

equilibrated at T = 22 oC, showing a relative ratio of [U(VI)] to [Ca] of ca. 1 : 2. This observation is in 

agreement with a congruent dissolution of liebigite, Ca2UO2(CO3)3·10H2O(cr), and indicated that no 

precipitation of other solid phases containing Ca such as calcite in the system took place. However, 

sample C equilibrated in 5.61 m NaCl at T = 22 oC shows significantly decreased aqueous U(VI) 

concentration compared with sample A and B, whilst retaining relatively high concentration of calcium 

in solution. It apparently indicates the transformation of the initial liebigite into a new solid phase with 

considerably lower solubility and calcium content (solid phase ratio Ca : U << 2). 
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The concentrations of dissolved U(VI) and Ca determined in the samples at T = 80 oC significantly differ 

from the analogous samples with Im ≤ 0.51 m equilibrated at T = 22 oC. In 5.61 m NaCl, the aqueous 

U(VI) concentrations obtained at both T = 22 oC and 80 oC are similar to each other, whereas a 

remarkably lower Ca concentration is measured at elevated temperature condition. The experimental 

observations, i.e. the pHm shift towards higher values and the low Ca concentrations, made for the 

solubility samples at elevated temperature are in agreement with the precipitation of calcite, CaCO3. 

 

 

Table 5. pHm, [U] and [Ca] in the investigated solubility samples after attaining equilibrium conditions. 

 

Sample T (oC) 
pHm 

[NaCl] (m) 
Concentration (×10-3 m) 

Ca : U ratio 
Initial Final [U] [Ca] 

A 

(22 ± 3) 

8.1 8.3 ≈ 0.03* 8.5 17.9 2.1 

B 8.1 7.8 0.51 21.6 40.0 1.9 

C 8.1 7.9 5.61 0.08 65.4 785 

D 

(80 ± 5) 

8.2 9.0 ≈ 0.03* 0.05 n.d. n.d. 

E 8.2 8.7 0.51 3.6 n.d. n.d. 

F 7.9 8.4 5.61 0.15 0.18 1.2 

* Resulting from the pHm titration; deionized water as original solution. 

 

 

4.6.2 Solid phase characterization 

 

After 132 days, U(VI) solid phases were recovered from the solubility experiments. Bright yellow solid 

particles are found for all samples at T = 22 oC bearing the same appearance as the initial liebigite. 

However, samples at T = 80 oC show the formation of orange-yellow solid phases, which are relatively 

comparable to Na2U2O7·H2O(cr), indicating the transformation of solid U(VI) phase at elevated 

temperature condition. 

Powder XRD patterns of the solid U(VI) phases are presented in Figure 21. The XRD patterns collected 

for samples equilibrated at T = 22 oC and at low ionic strength conditions (sample A and B) match the 

reference pattern for liebigite, Ca2UO2(CO3)3·10H2O(cr) (JCPDS file number 49-1056). The powder 

pattern of sample C, equilibrated at T = 22 oC at high ionic strength, is clearly different from A and B, 

and agrees well with the reference pattern for andersonite (Na2CaUO2(CO3)3·6H2O) (JCPDS file number 

46-1368). The XRD data obtained in this work are also in excellent agreement with literature 

datapreviously reported by Amayri et al [44].  No indications for the presence of calcite are found at T 

= 22 oC based on the XRD results, which is in good accordance with the results obtained from the 

solubility data. 
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A clear transformation of the initial liebigite is observed for all samples at elevated temperature 

condition. The transformation into Na2U2O7·H2O(cr) is evident for the samples with 0.51 m (sample E) 

and 5.61 m of NaCl (sample F), based on the characteristic XRD pattern, c.f. reference data reported in 

[30]. On the contrary, a different XRD pattern is obtained for sample D (0.03 m NaCl), presenting 

remarkably shifted XRD peak towards lower 2θ values compared to the reference pattern of 

Na2U2O7·H2O(cr) (JCPDS file number 87-1714). The XRD pattern of sample D show considerable 

similarity with the pattern of CaU2O7·3H2O(cr) [45], which was found to control the U(VI) solubility in 

dilute to concentrated alkaline CaCl2 solutions in the absence of carbonate. Sharp XRD peaks located at 

ca. 2θ = 29.4o, identified for all solid U(VI) phases equilibrated at T = 80 oC, indicate the main reflection 

of calcite (104), confirming the precipitation of calcite during equilibration at elevated temperature.  

 

 

Figure 21. Powder X-ray diffraction patterns of solid U(VI) phases equilibrated at (a) T = 22 oC and at 

(b) T = 80 oC. Symbols indicate the reference XRD patterns reported in the JCPDS database for 

Ca2UO2(CO3)3·10H2O(cr), Na2CaUO2(CO3)3·6H2O(cr) and Na2U2O7H2O(cr). In addition, XRD 

patterns reported by Altmaier et al. [30, 45] for CaU2O73H2O(cr) and Na2U2O7H2O(cr) are showed 

for the comparison. Red crosses in (b) indicate the main reflection peak of calcite (104). 

 

As shown in Table 6, the ratio Ca : U and Na : U obtained for the solid U(VI) phases by using SEM-

EDS and quantitative chemical analysis are in good agreement with XRD data, pointing to 

Ca2UO2(CO3)3·10H2O(cr) (samples A and B) and Na2CaUO2(CO3)3·6H2O(cr) (sample C) as the main 

U(VI) solid phases in the systems at T = 22 oC. For samples equilibrated at T = 80 oC, remarkably higher 
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x
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 Na2U2O7H2O(cr), JCPDS Nr. 87-1714
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solid phase ratios of Ca : U are determined by chemical analysis than by SEM-EDS. In general, chemical 

analysis by combined ICP-OES (for [Ca]) and ICP-MS (for [U]) give an average value for the Ca : U 

ratio that is representative for the entity of all the solid phases present in the system, while SEM-EDS 

provide insight into the elemental composition of the targeted solid U(VI) phases. Therefore, the ratios 

Ca : U ≈ 2 obtained with chemical analysis for those samples equilibrated at T = 80 oC reveals the total 

inventories of U and Ca originated from the initial mineral liebigite. In addition, the ratio Na : U ≈ 1.5 

determined by using both SEM-EDS and chemical analysis for sample F provides complementary 

support on the formation of Na2U2O7·H2O(cr) in concentrated NaCl solution at T = 80 oC. SEM-EDS 

results for sample D and E represent the co-existence of Na and Ca in the solid U(VI) phases, supporting 

that the initial liebigite transformed into Na- and Ca-diuranates at T = 80 oC.  

 

Table 6. Ca : U and Na : U ratios in the solid U(VI) phases quantified by SEM–EDS and chemical 

analysis (U: ICP–MS; Ca: ICP–OES). 

 

Sample T (oC) [NaCl] (m) 
SEM–EDS ICP–MS/OES 

Ca : U Na : U Ca : U Na : U 

A 

(22 ± 3) 

≈ 0.03 2.3 – 2.1 – 

B 0.51 1.8 – 2.0 – 

C 5.61 1.0 2.0 1.1 1.9 

D 

(80 ± 5) 

≈ 0.03 0.5 0.4 2.3 0.2 

E 0.51 0.6 1.2 2.3 0.9 

F 5.61 0.2 1.6 2.3 1.7 

 

 

4.6.3 Thermodynamic model calculation 

 

Solid phases controlling the overall U(VI) solubility in the background electrolyte solutions investigated 

in this work at T = 22 oC are unambiguously identified to be Ca2UO2(CO3)3·10H2O(cr) (for ca. 0.03 m 

and 0.51 m NaCl) and Na2CaUO2(CO3)3·6H2O(cr) (for 5.61 m NaCl). Based on the experimental 

solubility results and the thermodynamic data available for the aqueous U(VI) speciation in the presence 

of Ca and carbonate, the solubility products of Ca2UO2(CO3)3·10H2O(cr) and 

Na2CaUO2(CO3)3·6H2O(cr) are calculated at infinite dilution. The solubility data obtained at T = 80 °C 

are not employed for thermodynamic model calculations as the solubility controlling U(VI) solid phases 

remain undetermined and as the free carbonate concentration in the solution are unknown due to the 

partial loss of CO2(g) for all samples at elevated temperature. 

 

The dissolution of Ca2UO2(CO3)3·10H2O(cr) and Na2CaUO2(CO3)3·6H2O(cr) is controlled by the 

equilibrium reactions (6) and (7), respectively. 
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Ca2UO2(CO3)3·10H2O(cr)  2 Ca2+ + UO2
2+ + 3 CO3

2– + 10 H2O(l)    (6) 

 

Na2CaUO2(CO3)3·6H2O(cr)  2 Na+ + Ca2+ + UO2
2+ + 3 CO3

2– + 6 H2O(l)   (7) 

 

The solubility products of Ca2UO2(CO3)3·10H2O(cr) and Na2CaUO2(CO3)3·6H2O(cr) can then be 

described according to equations (8) ‒ (9) (for I ≠ 0) and equations (10) ‒ (11) (for infinite dilution): 

 

log K’s,0{Ca2UO2(CO3)3·10H2O(cr)} = 2 log [Ca2+] + log [UO2
2+] + 3 log [CO3

2–]  (8) 

 

log K’s,0{Na2CaUO2(CO3)3·6H2O(cr)} 

= 2 log [Na+] + log [Ca2+] + log [UO2
2+] + 3 log [CO3

2–]  (9) 

 

and 

 

log K°s,0{Ca2UO2(CO3)3·10H2O(cr)} = log K’s,0{Ca2UO2(CO3)3·10H2O(cr)} 

+ 2 log γ {Ca2+} + log γ {UO2
2+} + 3 log γ {CO3

2–} + 10 log aw  (10) 

 

log K°s,0{Na2CaUO2(CO3)3·6H2O(cr)} = log K’s,0{Na2CaUO2(CO3)3·6H2O(cr)} 

+ 2 log γ {Na+} + log γ {Ca2+} + log γ {UO2
2+} + 3 log γ {CO3

2–} + 6 log aw (11) 

 

where γ is the activity coefficient of an ion and aw is the water activity. For the evaluation of the solubility 

products of Ca2UO2(CO3)3·10H2O(cr) and Na2CaUO2(CO3)3·6H2O(cr), the required activity coefficients 

are calculated with the SIT (specific ion interaction theory) approach. Total carbonate concentrations 

are estimated assuming a congruent dissolution of the initial liebigite (Ctot = 3  [U]tot) for ca. 0.03 m 

and 0.51 m NaCl solutions. In 5.61 m NaCl, the total carbonate concentration is calculated from the 

mass-balance by considering the experimental total concentration of U(VI) and Ca ions. Solubility 

products of Ca2UO2(CO3)3·10H2O(cr) and Na2CaUO2(CO3)3·6H2O(cr) extrapolated to I = 0 with SIT 

approach are listed in Table 7. The values for log K°s,0{Ca2UO2(CO3)3·10H2O(cr)} obtained in ca. 0.03 

m and 0.51 m NaCl solutions are in good agreement with each other. For the value of log 

K°s,0{Na2CaUO2(CO3)3·6H2O(cr)}, a relatively large uncertainty of ± 0.5 was assumed as only one 

experimental dataset, namely 5.61 m NaCl, was available for the evaluation. 

Calculated solubility products are further employed to calculate the solubility of U(VI) at room 

temperature under the experimental conditions investigated in this work. As shown in Figure 20, the 

experimental and calculated solubility of U(VI) are in excellent accordance with each other for various 

background electrolyte systems. A more detailed description of this work is provided by Lee et al. [46]. 
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Table 7. Solubility products of Ca2UO2(CO3)3·10H2O(cr) and Na2CaUO2(CO3)3·6H2O(cr) calculated 

from experimental solubility data at room temperature. 

 

Reactions [NaCl] (m) log K’s,0 log K°s,0 

Ca2UO2(CO3)3·10H2O(cr) 

 2 Ca2+ + UO2
2+ + 3 CO3

2– + 10 H2O(l) 

≈ 0.03 m –(30.8 ± 0.3) –(32.4 ± 0.3) 

0.51 m –(27.9 ± 0.1) –(32.2 ± 0.1) 

Na2CaUO2(CO3)3·6H2O(cr) 

 2 Na+ + Ca2+ + UO2
2+ + 3 CO3

2– + 6 H2O(l) 
5.61 m –(26.8 ± 0.2) –(31.8 ± 0.5) 
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6.  List of Figures 

 

Figure 1. Solubility of Nd(OH)3(s) in [NaCl] = 0.1 (a), 0.51 (b), and 5.6 m (c) at T = 25, 55, 80 °C. 

Experimental data: Nd(III) concentration vs pHm. Dashed lines: SIT model calculations at T = 25 °C. 

Relevant literature data also displayed for comparison: Neck et al. 2009 [2], Wood et al. 2002 [3], Rao 

et al. 1996 [4]. 

Figure 2. Thermo-Gravimetric Analaysis (TGA) diagrams of (a) Nd(OH)3(s) after preparation; (b) 

material equilibrated in NaCl 5.6 m, T = 80 °C, pHm = 7.5, transformed into a solid consistent with the 

stoichiometry Nd(OH)2Cl(s) (XRD characterization in Figure 3). 

Figure 3. Bottom, left: XRD patterns of known solid phases Nd(OH)3(cr) (PDF file n. 70-0215 [7]) and 

of Nd(OH)2Cl(cr) (PDF file n. 72-1812 [8]). (a) Initial material, characterized as Nd(OH)3(s); (b) 

Nd(OH)3(s) equilibrated in NaCl 0.10 m, T = 80 °C, pHm 8.2; (c) Nd(OH)3(s) equilibrated in NaCl 0.51 

m, T = 80 °C, pHm 8.3; (d) Nd(OH)3(s) equilibrated in NaCl 5.6 m, T = 80 °C, pHm 8.5; (e) Nd(OH)3(s) 

equilibrated in NaCl 0.10m, T = 80 °C, pHm 7.5. 

Figure 4. Solubility data of Th(IV) hydrous oxide: (a) freshly precipitated; (b) aged for 1 month at 

T = 80 °C and pHm = 3 and 12.8. All solubility experiments conducted in 0.1 M NaCl. Experimental 

solubility data reported in the literature for ThO2(am, hyd) in 0.1 M NaCl and NaClO4 systems 

appended for comparison [12, 13]. Solid, dotted and dashed lines correspond to the solubility curves 

for ThO2(am, hyd, fresh), ThO2(am, hyd, aged) and ThO2(cr) using thermodynamic data selected in the 

NEA-TDB [11]. 

Figure 5. Solubility data of Th(IV) hydrous oxide: (a) aged for 2 months at T = 80 °C and pHm = 3 and 

12.8; (b) aged for 4.5 months at T = 80 °C and pHm = 3 and 12.8. All solubility experiments conducted 

in 0.1 M NaCl. Experimental solubility data reported in the literature for ThO2(am, hyd) in 0.1 M NaCl 

and NaClO4 systems appended for comparison [14]. Solid, dotted and dashed lines correspond to the 

solubility curves for ThO2(am, hyd, fresh), ThO2(am, hyd, aged) and ThO2(cr) using thermodynamic 

data selected in the NEA-TDB [11]. 

Figure 6. Solubility of the aged phase ThO2(ncr, hyd, t = 2 m, pH = 12.8) at T = 22 and 80 °C 

determined in this work in 0.1 M NaOH systems with 0.01 M ≤ [Na2CO3]tot ≤ 1.5 M. Experimental 

solubility data at T = 22-25 °C reported by Altmaier et al. [17] and Rai et al. [17-19] are appended for 

comparison. Solid lines correspond to thermodynamic calculations at T = 22 and 80 °C using 

thermodynamic data derived in this work, selected in the NEA-TDB and estimated by Amphos21 (see 

text). 

Figure 7. Diffractograms of the Th(IV) solid phases synthesized in this work and equilibrated at 

T = 80 °C and pHc(25 °C) = 3 and 12.8, except for sample “ThO2(freshly precipitated)” measured 2 

days after precipitation. Vertical dashed lines refer to the ThO2(cr) reference (PDF 75-0052).
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Figure 8. Experimental Np(V) solubility in (a) 0.1 m NaOH and (b) 5.6 m NaCl solutions determined 

after 30 days of heating period in comparison to the solubility data of NpO2OH(am) in 5 M NaCl 

reported by [23, 24]. Solid lines represent the calculated solubility of NpO2(OH)(am,fresh).  

Figure 9. Powder X-ray diffraction patterns of the transformed Np(V) solid phases in comparison to the 

one for NpO2OH(am,fresh) [25].  

Figure 10. SEM images of the transformed Np(V) solid phases. (a) 0.1 m NaOH; (b) 5.6 m NaCl, pHm 

= 13.0. 

Figure 11. XPS spectra of (a) Np4f- and (b) O1s-signal of the investigated Np solid phases. 

Figure 12. Total aqueous Np concentration measured as a function of reaction time at T = 80 oC with 

(a) AH2QDS/AQDS, (b) Fe powder, (c) SnCl2 redox system at various pHm conditions. Dashed line 

indicates detection limit of quantification analysis. 

Figure 13. Total aqueous Np concentration measured as a function of reaction time at T = 80 oC with 

(a) hydroquinone and (b) Fe(II)/Fe(III) redox system at various pHm conditions. Dashed line represents 

detection limit of quantification analysis. 

Figure 14. Solubility of UO3·2H2O(cr) and Na2U2O7·H2O(cr) in NaCl 0.1, 0.51, 5.6 m at T = 25, 55, 80 

°C.  Solid thick lines correspond to the solubility at T = 25 °C calculated using the SIT model. Dashed 

lines indicate the contribution to the solubility of the UO2(OH)4
2- (1,4) species. Data reported by 

Endrizzi et al. and Altmaier et al are included for comparison [30, 31]. 

Figure 15. Powder XRD patterns of UO3·2H2O(cr) investigated in the p.w. (a) reference patterns of 

UO3·2H2O(cr) (red, JSPD file 43-0364 [32]), Na(UO2)O(OH)(cr) (blue, JSPD file 50-1586 [33]), Na2-

U3O·10H2O (green, JSPD file 41-0840 [34]). (b) UO3·2H2O(cr) before solubility experiments (pre-

equilibrated at T = 80 °C). (c) UO3·2H2O(cr) equilibrated 260 days, T = 80 °C, NaCl 0.1 m, pHm = 4.4. 

(d) UO3·2H2O(cr) equilibrated 260 days, T = 25 °C, NaCl 0.5 m, pHm = 4.5. (e) UO3·2H2O(cr) 

equilibrated 260 days, T = 80 °C, NaCl 0.5 m, pHm = 4.9. (f) UO3·2H2O(cr) equilibrated 260 days, T = 

80 °C, NaCl 5.6 m, pHm = 4.9. 

Figure 16. Thermogravimetric diagram of UO3·2H2O(cr) (left) and Na2U2O7·H2O(cr) (right). 

Figure 17. SEM images of UO3·2H2O(cr) (a) after preparation; (b) aged in NaCl 0.10 m, T = 80 °C, 

pHm = 4.4; (c) aged in NaCl 0.51 m, T = 80 °C, pHm = 4.3; (d) aged in NaCl 5.6  m, T = 80 °C, pHm = 

4.9. 

Figure 18. Luminescence spectra of metaschoepite (solid line) and transformed metaschoepite (short 

dash dot line). Spectra measured at ~6 K, 1 µs delay,1 ms integration time,500 accumulations. Laser: 

λex = 266 nm; 600µJ/pulse. 

Figure 19. Powder XRD patterns of Na2U2O7·H2O(cr) investigated in the p.w. (a) blue: reference 

patterns of Na(UO2)O(OH)(cr) (JSPD file 50-1586 [33]); green: reference patterns of Na2U3O10·H2O(s) 

(JSPD file 41-0840 [34]). (b) Na2U2O7·H2O(cr) before solubility experiments. Pre-equilibrated at T = 
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80 °C. (c) Na2U2O7·H2O(cr) equilibrated 292 days, T = 80 °C, NaCl 0.1 m, pHm = 8.2. (d) 

Na2U2O7·H2O(cr) equilibrated 292 days, T = 80 °C, NaCl 0.1 m, pHm = 12.0. (e) Na2U2O7·H2O(cr) 

equilibrated 268 days, T = 80 °C, NaCl 0.1 m, pHm = 8.3. (f) Na2U2O7·H2O(cr) equilibrated 292 days, 

T = 80 °C, NaCl 0.5 m, pHm = 12.0. 

Figure 20. Experimental U(VI) solubility of initial Ca2UO2(CO3)3·10H2O(cr) equilibrated in ca. 0.03 

m, 0.51 m, and 5.61 m NaCl solutions at T = 22 oC and 80 oC. Dashed lines indicate the solubility curves 

predicted at room temperature according to the solubility products of Ca2UO2(CO3)3·10H2O(cr) and 

Na2CaUO2(CO3)3·6H2O(cr).  

Figure 21. Powder X-ray diffraction patterns of solid U(VI) phases equilibrated at (a) T = 22 oC and at 

(b) T = 80 oC. Symbols indicate the reference XRD patterns reported in the JCPDS database for 

Ca2UO2(CO3)3·10H2O(cr), Na2CaUO2(CO3)3·6H2O(cr) and Na2U2O7H2O(cr). In addition, XRD 

patterns reported by Altmaier et al. [30, 45] for CaU2O73H2O(cr) and Na2U2O7H2O(cr) are showed 

for the comparison. Red crosses in (b) indicate the main reflection peak of calcite (104). 
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Zusammenfassung 

Der Redoxzustand im Nahfeld eines Endlagers hat einen bedeutenden Einfluss auf die 

Löslichkeit von Radionukliden. Er wird üblicherweise als Redoxpotential ausgedrückt, 

das durch potentiometrische Messung mit einer Messkette aus Platin-Elektrode und Sil-

ber-Silberchlorid-Referenzelektrode bestimmt wird. Diese Messungen führen jedoch in 

salinaren Lösungen zu systematischen Abweichungen, die sich auf thermodynami-

schem Wege nicht quantifizieren lassen. Auf Basis früherer Arbeiten wurde eine rechne-

rische Methode entwickelt, die es erlaubt, die primären potentiometrischen Messdaten 

in einem zweistufigen Verfahren zunächst in ein Konzentrationsverhältnis zweier re-

doxsensitiver Spezies und anschließend in ein alternatives Maß für den Redoxstatus 

umzurechnen.  

Die Methode beruht auf der Auswertung systematischer Messungen des Redoxpotenti-

als von Hexacyanoferrat(II)/ Hexacyanoferrat(III)-Mischungen in Lösungen der Salze 

NaCl und MgCl2. Hierdurch konnte ein empirischer Bezug zwischen dem Redoxpotenti-

als, der Salzkonzentration (NaCl oder MgCl2) und dem bekannten Mischungsverhältnis 

der Hexacyanoferrate hergestellt werden. Diese Beziehung lässt sich auch in Lösungen 

anwenden, die keine Hexacyanoferrate, sondern andere redoxsensitive Stoffe enthalten. 

Das berechnete Mischungsverhältnis der Hexacyanoferrate ist bereits ein alternatives 

Maß für den Redoxzustand. Es ist aber eher ungewöhnlich und sollte in gebräuchlichere 

Größen umgewandelt werden. Hierzu eignet sich z.B. der negative Logarithmus des Par-

tialdruckes von Sauerstoff.  

Die Umrechnung vom Mischungsverhältnis in den Sauerstoff-Partialdruck erfordert ne-

ben der Wasserstoffionenkonzentration (pcH) ein Modell zur Beschreibung der Aktivi-

tätskoeffizienten von Hexacyanoferrat-Ionen in NaCl- und MgCl2-Lösungen. Hierfür wur-

den Literaturdaten gesammelt und ausgewertet. Es standen jedoch für alle betrachteten 

binären und ternären Lösungssysteme keine oder nicht ausreichende Daten zur Verfü-

gung. Deshalb wurden isopiestische Messungen durchgeführt, um Dampfdruckdaten bei 

25, 40 und 60°C zu gewinnen. Einige Löslichkeitsmessungen wurden bei 25, 40 und 

60°C durchgeführt. Die Messungen dienten in Kombination mit Literaturdaten als Grund-

lage zur Ableitung eines Pitzer-Modells für binäre und ternäre Systeme. Für Systeme mit 

Natriumhexacyanoferraten kann dieses Modell zuverlässig die Aktivitätskoeffizienten be-

schreiben. Bei magnesiumhaltigen Systemen gelingt dies nur teilweise. Hier wirkt sich 

offenbar eine starke Komplexbildung zwischen Mg2+ und Hexacyanoferraten aus. 
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Besonders stark ist dieser Effekt zwischen Mg2+ und Fe(CN)6
4-. Er führt dazu, dass sich 

das binäre System Mg2Fe(CN)6-H2O nur schwierig und das ternäre System Mg2Fe(CN)6-

MgCl2-H2O nur in Ansätzen beschreiben lässt. Hier sind entweder weitere Messungen 

notwendig, um die Komplexbildung quantitativ beschreiben zu können oder aber Unter-

suchungen mit einem anderen Redoxpaar, in dem die genannten Schwierigkeiten nicht 

auftreten. 

Unter stark reduzierenden Bedingungen, wie sie bei der Korrosion von Stahl im Endlager 

auftreten, tritt gelöstes Eisen praktisch nur noch in der Oxidationsstufe +II auf. Aus frühe-

ren Arbeiten war bekannt, das es in konzentrierten Chlorid-Lösungen zur Komplexbil-

dung zwischen Fe2+ und Cl- kommt. Dies wird auch als einer der Gründe angesehen, 

weshalb die Modellierung von Löslichkeitssystemen mit hohen Chloridgehalten, KCl-

FeCl2-H2O nicht zufriedenstellend gelingt. Ein Modell zur quantitativen Beschreibung der 

Komplexbildung von Fe2+ mit Chlorid in Lösungen von NaCl, KCl und MgCl2 fehlte bis-

lang. Darum wurden UV-spektrophotometrische Messungen durchgeführt, um die Kom-

plexbildung in diesen Lösungen wie auch in LiCl-Lösungen bei 25 bis 80°C zu untersu-

chen. Die erhaltenen Spektren wurden anschließend rechnerisch in Einzelspeziesspek-

tren getrennt und die Konzentration der einzelnen Spezies bestimmt. Es zeigte sich, 

dass sich ab einer Chlorid-Konzentration von etwa 1 mol/kg Cl-Gehalt ein erster Komplex 

zeigt. Diesem konnte die Zusammensetzung FeCl+ zugeordnet werden. Erst bei Chlorid-

Konzentrationen von etwa 8 mol/kg tritt ein zweiter Komplex auf. Hierbei handelt es sich 

wahrscheinlich um FeCl2(aq). Weitere Komplexe lassen sich bis zu einer Cl-Konzentra-

tion von 16 mol/kg (in LiCl-Lösungen) selbst bei 80°C nicht nachweisen. 

Für den Komplex FeCl+ wurde eine Bildungskonstante und Pitzer-Koeffizienten für die 

Wechselwirkung mit den Ionen Cl-, Na+, K+ und Mg2+ abgeleitet. Mit ihrer Hilfe ist es 

möglich, die beobachtete Speziation über den größten Teil der betrachteten Konzentra-

tionen sehr gut zu beschreiben. Nur bei den höchsten Konzentrationen sind zunehmend 

Abweichungen zu beobachten. Das Modell wurde anschließend angewandt, um die Lös-

lichkeiten in den Systemen NaCl-FeCl2-H2O und KCl-FeCl2-H2O zu beschreiben. Obwohl 

die auftretenden Eisen-Konzentrationen in diesen Systemen wesentlich größer sind als 

in den photometrischen Messungen und auch Wechselwirkungen zwischen verschiede-

nen Eisen-Spezies relevant werden, ist die Übereinstimmung zwischen berechneten und 

beobachteten Löslichkeiten über weite Strecken sehr gut. 

Obwohl die Leistung des Modells zufriedenstellend war, zeigte der ungewöhnliche Wert 

der Ionenwechselwirkungskoeffizienten für FeCl+ und die Abweichung der berechneten 
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Komplexbildungskonstante von den Literaturwerten, dass das Modell mit etwas Vorsicht 

behandelt werden sollte. Es sind zusätzliche wissenschaftliche Anstrengungen erforder-

lich, um das Spektren-Trennungsverfahren zu verbessern und die Fe(II)-Speziation in 

Lösungen mit höheren Eisenkonzentrationen aufzuklären. Dies würde einen Weg für 

eine unabhängige Abschätzung der Ionenwechselwirkungskoeffizienten für Fe2+, FeCl+ 

und möglicherweise FeCl2(aq) eröffnen. Diese Werte können aus Lösungen, in denen 

Fe(II) nur eine Spurenkomponente ist, nicht bestimmt werden. 

Analoge Messungen in Natriumsulfat-Lösungen konnten keinen eindeutigen Nachweis 

für eine Komplexbildung erbringen. Die Komplexbildung zwischen Fe2+ und SO4
2- ist 

zwar bekannt, aber sie macht sich in den Absorptionsspektren nicht signifikant bemerk-

bar. 
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1 Introduction 

Within the scope of the joint project ThermAc3, the partners aimed to extend the ther-

modynamic database for actinides, long-lived fission products and relevant matrix ele-

ments in aquatic systems at higher temperatures, using estimation algorithms, new ex-

perimental investigations and quantum-chemically supported structural information.  

The mobility of radionuclides in the near field of a repository is largely dependent on the 

oxidation level prevailing in the geochemical near field environment. Each oxidation 

stage is linked to a specific set of possible complex compounds, sorption patterns and 

options for solid phase formation that can increase or decrease the solubility of radionu-

clides by many orders of magnitude.  

The predominant oxidation stages of the radionuclides are a product of geochemical 

boundary conditions, especially the overall redox status of the near field system. It is 

mainly determined by redox-active steel corrosion phases and the corrosion hydrogen. 

As iron is the main component of most container materials, liners, and other metallic 

materials, it can be assumed that solid and dissolved iron compounds are mainly respon-

sible for determining the redox level in the near field. Dissolved iron is also an important 

partner for redox reactions with radionuclides. For a deeper understanding of the near-

field processes, especially under different redox conditions, a sufficiently good 

knowledge of the thermodynamic properties of dissolved iron compounds, especially 

those of the prevailing iron(II) oxidation stage is of high importance. 

A related challenge is the interference-free measurement of the redox level in high-saline 

systems. When using the standard measuring systems, a medium-dependent diffusion 

potential always occurs at the reference electrode. It alters the measured cell potential 

with increasing salinity, so it no longer represents the thermodynamic redox potential. 

Approaches for compensated determination of a redox level have already been devel-

oped for 25°C (Hagemann et al. 2014), but they were derived at very low pH values and 

are limited to 25°C. Consequently, it is not possible to obtain reliable information on the 

redox level at temperatures above 25°C.  

The study aimed at providing methods and models that allow a bias-free determination 

of the redox level of saline solutions at neutral to alkaline pH values at 25°C and higher 

temperatures.  



 

B-2 

Concerning the aqueous chemistry of iron, it was planned to investigate the speciation 

of Fe(II) with chloride in sulphate solutions and to develop a model that describes com-

plex formation and solubility in saline systems. 
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2 Measurement of redox potential in saline solutions 

2.1 Previous approaches for bias-free redox determinations 

In aqueous solutions, the redox potential (Eh) is usually determined with a combination 

of a platinum redox electrode and a reference electrode (usually Ag/AgCl/3 M KCl). The 

method provides reliable information on the redox state of solutions with low salt content, 

as long as the solution is sufficiently redox buffered, contains sufficient ions of reversibly 

reacting redox pairs or is in equilibrium with rapidly reacting redox-sensitive solids. This 

can be achieved in laboratory tests if certain redox buffers such as mixtures of Fe2+/Fe3+ 

or Fe(CN)6
4-/Fe(CN)6

3- are added.  

However, the method no longer provides reliable information if the salt content increases. 

In that case, the diffusion potential between the internal electrolyte of the reference elec-

trode and the measuring solution, which is regarded as constant, changes. The same 

effect occurs during pH measurements when a reference electrode is used. Except under 

special experimental conditions that are not always given, the level of the diffusion po-

tential can neither be reliably calculated nor measured so that the measured cell voltage 

no longer corresponds to the redox potential and cannot be converted into this. 

An approach to overcome this problem was developed by Hagemann et al. (2014). It is 

based on determining the relationship between cell voltage and a known or measurable 

redox-sensitive variable and deriving from this a model that allows the conversion of the 

cell voltage into a redox level. Activity ratios of salts (e.g. FeCl2/FeCl3), concentration 

ratios of redox pairs (e.g. Fe(CN)6
4-/Fe(CN)6

3-) or the partial pressure of oxygen (pO2/H+) 

can be considered as redox-sensitive variables.  

Corresponding models were derived from acid solutions containing mixtures of 

FeCl2/FeCl3 or FeSO4/Fe2(SO4)3. Chlorides or sulphates of sodium, potassium or mag-

nesium were used as background salts. In Bischofer et al. (2016) the approach was 

extended to neutral solutions containing potassium hexacyanoferrate.  

The determination method consists of two steps: 

1. The apparent redox potential of a solution is measured with a normal redox com-

bination electrode.  
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2. The apparent redox potential (Eapp) is transformed into an alternative redox meas-

ure (Rx0) by adding an empirical correction term ΔRx that expresses the differ-

ence between the theoretical redox potential in the measuring solutions and the 

apparent value.  

Determination of ΔRx and its empirical formula requires a thermodynamic model for the 

calculation of activity coefficients of Fe(II) and Fe(III) in the measuring solutions. The 

following formula shows the mathematical relationship for a chloride-containing solution: 

𝛥𝑅𝑥 = 𝐸𝑎𝑝𝑝 − 𝑈0 + 0,059 𝑙𝑜𝑔
𝑎𝐹𝑒2+𝑎𝐶𝑙−

2

𝑎𝐹𝑒3+𝑎𝐶𝑙−
3  

If the background salt concentration is changed, the difference ΔRx between the meas-

ured and calculated redox potential can be represented by a simple mathematical ex-

pression. The relationship between the difference ΔRx and the background salt concen-

tration c can usually be expressed by a two-parameter expression: 

𝛥𝑅𝑥 = 𝑎 𝑙𝑛 𝑐 + 𝑏 

where a, b = empirical parameters, 

2.2 Activity models for Fe(II) and Fe(III) species in salt solutions 

For Fe(II) and Fe(III), the required Pitzer activity models are available at 25°C. They allow 

the calculation of the activity coefficients of Fe2+ in solutions of the salts NaCl, KCl, MgCl2, 

CaCl2, Na2SO4, K2SO4 and MgSO4 and for Fe3+ in solutions of salts NaCl, KCl, MgCl2, 

CaCl2 (Moog and Hagemann 2004). For Fe(III) complementary models for Fe3+ in solu-

tions of salts K2SO4 and MgSO4 were developed (Hagemann et al. 2014). No experi-

mental basis for the Na2SO4-Fe2(SO4)3-H2O system was available. These models sim-

plify the chemical reality as they implicitly express complex formation of Fe(III) and Fe(II) 

with chloride and sulphate in terms of strong ion interactions.. Although the models work 

quite well in the binary and ternary systems considered for model development, the ro-

bustness of the models cannot be guaranteed in multi-ion media. Moreover, these mod-

els may be applied only in very acidic solutions. Even at very low pH values, Fe3+ starts 

to form hydroxo complexes that soon predominate the speciation of Fe(III).  
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While the principal approach of determining the redox level with the help of an empirical 

activity model for a redox couple was an important step forward, the limited applicability 

of the thermodynamic model for Fe2+ and Fe3+ at relevant pH values represented a major 

draw-back. 

As part of the VESPA project, the use of a different redox couple was tested: hexacy-

anoferrate(II)/ hexacyanoferrate(III) (Bischofer et al. 2016). Both ions have the important 

advantage of being stable at slightly acidic to mildly alkaline conditions. They do not form 

strong complexes with chloride, sulphate or alkali metal ions so that their solution chem-

istry is rather simple. The redox reaction between hexacyanoferrate(II) and hexacy-

anoferrate(III) is quite fast and reversible. 

Some solubility measurements in the systems K4Fe(CN)6-KCl-H2O and K3Fe(CN)6-KCl-

H2O have been conducted to complete the available database for potassium hexacy-

anoferrates. The project VESPA provided a proof of concept that an approach based on 

this redox couple would be a viable way for a method to determine the redox level at 

neutral pH values. . 

2.3 Experimental approach 

The work programme was divided into two parts. On the one hand, redox measurements 

were carried out on NaCl, MgCl2 and mixed NaCl/MgCl2 solutions. In these solutions, the 

pH value was determined by adding a buffer. The redox potential was adjusted by adding 

equal amounts of potassium hexacyanoferrate(II) and potassium hexacyanoferrate(III).  

For the evaluation of these investigations it was necessary to develop a model to de-

scribe the activity coefficients of Fe(CN)6
3- and Fe(CN)6

2- in binary solutions with Na+, 

K+, and Mg2+ as well as in mixed solutions with NaCl, KCl and MgCl2. Since the experi-

mental data required for this were insufficient, they had to be supplemented by new ex-

perimental data. For this purpose, isopiestic measurements were conducted. 
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3 Investigation of aqueous solutions containing hexacy-

anoferrate(II) and hexacyanoferrate(III) 

3.1 Preparation of hexacyanoferrate compounds and stock solutions 

3.1.1 Sodium hexacyanoferrate(II) – Na4Fe(CN)6 

Sodium hexacyanoferrate(II) (sodium ferrocyanide) – Na4Fe(CN)6·10H2O - was obtained 

from Sigma Aldrich (≥99% Art No. 13425). It was recrystallized once from hot water. A 

stock solution was prepared by dissolving the solid salt in deionized water and filtering 

the resulting solution. The concentration of the solution was determined by ICP-OES 

(both Na and Fe).  

3.1.2 Sodium hexacyanoferrate(III) – Na3Fe(CN)6 

Sodium hexacyanoferrate(III) (sodium ferricyanide) – Na3Fe(CN)6 could not be obtained 

from commercial suppliers and had to be synthesized in our laboratory. A couple of syn-

thesis methods were described in the literature, most of which included the oxidation of 

hexacyanoferrate(II) by a strong reagent such as chlorine or hydrogen peroxide (see 

Williams 1948). The methods depend on a reliable source of ferrocyanide acid which is 

difficult to synthesize in pure form or leads to impure products.  

Instead, we developed an entirely new approach. 92.62 g NaClO4·H2O (Merck Emsure) 

were dissolved in 73 ml deionized water. A second solution was prepared by adding 

67.48 g K3Fe(CN)6 (Merck) to 167 ml water. The sodium perchlorate solution was added 

stepwise to the ferrocyanide solution. Immediately a voluminous precipitate of potassium 

perchlorate formed according to the reaction 

NaClO4(aq) + K3Fe(CN)6(aq) → Na3Fe(CN)6(aq) + KClO4(s) 

The resulting solution is red. The precipitate settled only slowly. The mixture was given 

through a folded filter and the filtrate put in a refrigerator. After two days a pale-yellow 

precipitate has formed. Rinsing with water turned it white so that it was assumed to be 

KClO4. The filtrate was filtered again, and its volume reduced by heating in a rotary evap-

orator under a slight vacuum. Red crystals (needles) formed that were sucked dry on a 
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glass frit and further dried between sheets of filter paper. The product was dissolved in 

water until just all red crystals dissolved. Few white crystals of KClO4 remained that were 

removed by filtering. The product was stored in the dark in a desiccator under vacuum 

above CaCl2. The water content was found to be in the order of 3 to 4 mol per formula 

unit.  

Another batch of sodium hexacyanoferrate(III) was prepared the same way. However, 

after putting the concentrated solution in the refrigerator at 4°C, no dark red needles but 

orange cubic crystals formed. Allowing the crystals to heat up at ambient temperature 

led to their destruction and formation of a red solution. The water content of the orange 

crystals was in the order of 14 mol per mol Fe(CN)6. However, a second attempt to pro-

duce this solid resulted in an oversaturated solution from which only the low hydrate salt 

formed. 

The final solid products contained about 1-3 mol-% potassium in relation to sodium. Con-

sequently, the stock solutions made by the dissolution of this material had the same 

composition. If sodium ferricyanide was used for solubility measurements in the system 

Na3Fe(CN)6-NaCl-H2O potassium accumulated in the remaining solid hexacyanofer-

rate(III) phase. The potassium content of the solid increased to 15 to 25 mol-% with 

respect to Na. Almost no potassium was found in the solid phase when instead halite 

was the solubility limiting phase. 

No further effort was undertaken to identify the phase composition of the hexacyanofer-

rate(III) solids. It was noted that already Reindel (1867) observed the formation of a 

mixed sodium potassium ferricyanide KNa2Fe(CN)6 when he attempted to synthesize 

pure Na3Fe(CN)6 from potassium-containing solutions. Therefore, we assume that the 

potassium-rich ferricyanide is either a mixture of Na3Fe(CN)6·xH2O and a Na, K double 

salt or a solid solution (Na,K)3Fe(CN)6·xH2O. 

3.1.3 Potassium hexacyanoferrate(II) – K4Fe(CN)6 and potassium hexacy-

anoferrate(III) – K3Fe(CN)6 

The salts potassium hexacyanoferrate(II) and potassium hexacyanoferrate(III) were re-

crystallized once from commercial products (Merck p.a.).  
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3.1.4 Barium hexacyanoferrate(II) – Ba2Fe(CN)6 

The synthesis of Mg2Fe(CN)6 required the preparation of barium ferrocyanide. It was 

prepared as follows: 303 g Na4Fe(CN)6·10H2O (Sigma Aldrich >99%) were dissolved in 

500 ml deionized water. A second solution was prepared by dissolving 305 g BaCl2·2H2O 

(Merck p.a.) in 600 ml deionized water. Both solutions were mixed. Immediately a yellow 

precipitate formed that settled quickly. The precipitate was washed several times with 

deionized water to remove traces of sodium chloride. It was dried in an oven at 80°C. 

The amount of water in the final product was determined by dissolving 0.1916 g of the 

solid in 100 ml water and measuring the barium content with ICP-OES. The ferrocyanide 

content in the solid may then be calculated from the charge balance, the water content 

from the mass balance. The water content of our product could be expressed by the 

following formula: Ba2Fe(CN)6·4.38H2O. It is a fine pale yellow powder that easily loses 

hydrate water upon heating. Changing the heating temperature or the heating duration 

led to different water contents. 

3.1.5 Magnesium hexacyanoferrate(II) – Mg2Fe(CN)6 

This compound was prepared by dissolving 49,28 g of magnesium sulphate heptahy-

drate (Merck Emsure) in 200 g water and adding a slight excess of solid barium hexacy-

anoferrate(II) - Ba2Fe(CN)6·4.38H2O (60,36 g) and boiling the mixture for 4.5 h. The re-

sult was a yellow solution above a white precipitate. The solution was filtered through a 

0.45 µm syringe filter. Contact with air soon led to a greenish colour of the solution, 

possibly caused by a partial decomposition of ferrocyanide, subsequent oxidation of Fe2+ 

to Fe3+ and formation of of Prussian blue. The solution was concentrated in a rotary 

evaporator until a moist solid remained. It was dissolved in little water, filtered and put 

back into the evaporator. This procedure was repeated once. The final product was dried 

between sheets of filter paper and later in an oven at 50°C. Its water content was deter-

mined by dissolving the solid in water and measuring the iron, barium and magnesium 

content. The resulting formula was (Mg0.987Ba0.013)Fe(CN)6·9.4H2O. 

3.1.6 Magnesium hexacyanoferrate(III) - Mg3[Fe(CN)6]2 

The preparation of magnesium hexacyanoferrate(III) was performed in two steps. In the 

first step, hexacyanoferrate(III) acid was synthesised by slowly adding 86.86 g cold (0°C) 

perchloric acid (VWR Analar Normapur 70%, concentration determined by titration to be 
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69.42 wt.-%) to a solution of potassium hexacyanoferrate(III) (65.85 g in 200 ml water). 

The reaction was done under Argon in a three-necked Erlenmeyer flask immersed in an 

ice bath. A precipitate of KClO4 formed immediately according to the formula 

HClO4(aq) + K3[Fe(CN)6](aq)→ KClO4(s) + H3[Fe(CN)6](aq) 

After 30 minutes stirring the mixture was filtered. A second mixture was prepared by 

adding 17.49 g Mg(OH)2 to 20 ml of water. The hexacyanoferrate(III) acid solution was 

slowly given to this mixture. Since magnesium hydroxide was in excess, parts of it didn’t 

react. The resulting pH = 6 showed that no free acid remained. The mixture was filtered 

and put in a refrigerator. Solid magnesium hexacyanoferrate(III) was obtained by trans-

ferring the solution to a darkened desiccator where it was stored under vacuum above 

CaCl2. After nine days a colourless precipitate formed, possibly KClO4. It was filtered off. 

After 13 days the solution weight was reduced from 312 to 124 g. The solution was de-

canted into a new cup. Another week later 50 g of a dark red solid could be removed 

from the dish, was dried between filter paper and further dried in a desiccator. 

The product was purified by dissolving in water and drying in a desiccator nearly to dry-

ness. The supernatant solution was discarded, the crystals dried. An analysis showed 

that the solid still contained some potassium. The ratio K/Mg was 0.023. The water con-

tent was 14.3 mol per formula unit. Further purification may have been possible but due 

to the low amount of solid magnesium hexacyanoferrate(III) available the losses of the 

purification process would have been too large.  

3.1.7 Determination of the solubility of hexacyanoferrates 

To have a good estimate of the maximum solution concentration of sodium and magne-

sium hexacyanoferrates some experiments were conducted to test their solubility. Small 

amounts of water were added to the dried solids in screw-capped glass flasks and im-

mersed in a water bath at 25.0°C. The flasks were shaken from time to time to allow for 

a faster equilibration. After one day samples were taken both from the solution and the 

solid. The solids were dried between sheets of filter paper and then dissolved in water. 

They may contain minor amounts of a saturated solution. The results are summarized in 

Tab. 3.1.  
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Tab. 3.1 Solubility of sodium and magnesium hexacyanoferrates 

Salt Concentra-
tion of satu-
rated solu-

tion 

[mol/kg] 

Minor compo-
nents in solu-

tion 

[mol/mol] 

Minor compo-
nents in solid 

[mol/mol] 

Na3Fe(CN)6·2.4H2O· 3.2 K/Na: 0.016 K/Na: 0.099 

Mg3[Fe(CN)6]2·15.1H2O 0.86 K/Mg: 0.045 K not detectable 

Mg2Fe(CN)6·12.9H2O 1.45 Ba/Mg: 0.016 Ba/Mg: 0.004 
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3.1.8 Preparation and analysis of stock solutions 

Stock solutions were prepared by dissolving weighed amounts of hexacyanoferrate com-

pounds in deionized water. Their concentration was determined by analysis of iron, the 

corresponding cation (K, Na, Mg) as well as minor constituents (Ba, K). 

Stock solutions of sodium chloride and calcium chloride were prepared by dissolution of 

NaCl and CaCl2·4H2O (both Merck suprapur) in deionized water. In the case of NaCl, the 

concentration of the concentration was determined from the weighed masses of NaCl 

and water. It was checked and adjusted using the solution density (measured using an 

Anton Parr DMA 5000 M density oscillator with ±0,000001 g/cm3) and the density/ con-

centration relationship established by Romankiw and Chou (1983). 

The concentration of CaCl2 solutions was determined based on the solution density and 

the density/ concentration relationship published by Laliberté and Cooper (2004). This 

model allows a determination of the CaCl2 concentration within an uncertainty margin 

(95%) of 0.1% (rel.). 

3.2 Description of the isopiestic method 

Isopiestic measurements were performed at 25 to 90°C. The method has been described 

earlier in detail by Moog and Hagemann (2004). As for this project isopiestic measure-

ments were to be conducted at higher temperatures, the experimental set up from earlier 

experiments at 25 °C underwent some revision. Up to 40 °C, isopiestic vessels were 

placed in an open water bath as shown below (Fig. 3.1). 
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Fig. 3.1 Experimental set up for isopiestic measurements up to 40 °C 

For higher temperatures, the vessels were stored in ovens, whose temperature was con-

trolled at the required temperature (60 or 90°C) and was regularly checked by separate 

thermometers. It was found to be within a 0.1 °C margin around the desired value. The 

vessels were slowly rocked on a board that was moved by a device placed outside the 

oven (Fig. 3.3).  

For temperatures above 40 °C, a second lid was installed inside the vessel, just above 

the cups, which on its lower side was covered with a special rubber. Upon removal from 

the thermostat, the lid of the vessel was opened, and the second lid was screwed down 

onto to the cups After that the vessel was closed again and left to cool down. When the 

vessel was at room temperature the outer and inner lids were opened. The cups were 

closed with small plastic lids and then weighed. Between the opening of the vessel and 

the closure of the cups with the rubber lid, some water from the solution may vaporise 

and get lost to the atmosphere. This will lead to increased solution concentrations in the 

cups. On the other hand, some of the water in the saturated hotter atmosphere above 

the cups gets trapped inside the cups and will condensate during the following cooling 

period. This process would lead to a decrease in solution concentrations. No tests were 

performed to estimate the amount of lost or gained water, but it is assumed to be small. 

As the water activity is the same in all cups, it is also assumed that the water loss per 

time unit is also roughly the same, so that the impact on the concentrations of the solu-

tions is similar. Both effects (water loss and condensation) vary from cup to cup and 

cause a scattering of the analytical data that increases with temperature. 
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Fig. 3.2 Isopiestic vessel inside an oven 

 

Fig. 3.3 This picture shows a motor fixed at the outside of an oven to exert a 

gentle rocking motion to the board on which the isopiestic vessels rest 

The compositions of equilibrated solutions were determined by reweighing. Each cup 

was visually inspected for clues as to oxidation of the solution, or droplets occurring at 

the surface of the rubber. 

Typically, the variance between the smallest and highest concentration of binary salts in 

parallel cups was less than 0.1 wt.-% at 25°C and less than 0.3 wt.-% at higher temper-

atures. 
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3.3 The system Na4Fe(CN)6-H2O 

3.3.1 Previous thermodynamic investigations 

The first investigation of this system has been conducted by Berkeley et al. (1916). They 

measured the osmotic pressure Π of Na4Fe(CN)6 at 0°C and concentrations between 

0.08 and 0.3 mol/kg. These data were recalculated into water activities (and subse-

quently into osmotic coefficients) using the Raoult-Lewis equation 

𝛱 =
−𝑙𝑛𝑎𝐻2𝑂

𝑉0
R𝑇 

𝑉0: molar volume of water at temperature T 

𝛱 =  

(3.1) 

The molar volume of water at 0°C (1.80181·10-5 m3/mol) was calculated from its density 

at the same temperature (0,999843 kg/l, Wagner and Pruss 2002).  

Silvester and Rock (1973) measured the mean activity coefficient of Na4Fe(CN)6 poten-

tiometrically between 0.0005 and 0.1 mol/kg. 

3.3.2 Water activities of solutions in the system Na4Fe(CN)6-H2O 

In total 24 pairs of NaCl and of Na4Fe(CN)6 solutions were brought into equilibrium. All 

results are summarized in Tab. 9.1. Some experiments at 60°C resulted in cloudy solu-

tions or precipitation. The long test duration (up to several months for all three tempera-

tures) and the repeated contact with atmospheric oxygen led to partial decomposition of 

the hexacyanoferrates. Such experiments were excluded from further evaluation. 
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Fig. 3.4 Osmotic coefficients of Na4Fe(CN)6 solutions at 25 to 60°C 

 

Fig. 3.5 Activity coefficients of Na4Fe(CN)6 solutions at 25°C 

Discussion 

Our results are shown in Fig. 3.4. At all temperatures, the measured values show the 

same course. Up to approx. 0.3 mol/kg a continuous decrease can be observed. After 

that, the osmotic coefficients are almost constant. There is little difference between the 
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data at 25, 40 and 60°C. The osmotic coefficients calculated from the data of Berkeley 

et al. (1916) are noticeably lower and are not shown in the diagram. This observation 

also applies to other salt solutions he and his collaborators have investigated. It can 

therefore be assumed that the measurements made by Berkeley et al. (1916) were in-

fluenced by a systematic error.  

A set of Pitzer ion interaction parameters was developed based on our experimental 

results and the potentiometric data from Silvester and Rock (1973). It became clear that 

it was not possible to represent the potentiometric data without introducing the parameter 

β(2) for the interaction between Na+ and Fe(CN)6
4-. It reflects the complex formation be-

tween the two ions at low ionic strength and was calculated form the complex formation 

constant log β1 = 2,36 ( Capone et al. 1986): 

β(2) 
Na+,Fe(CN)64- = β1/2 = -114 

The temperature dependence of Pitzer interaction coefficients for Na4Fe(CN)6 as well as 

for all other systems considered in this study is expressed by the following general for-

mula: 

𝑃 = 𝑃(𝑇𝑅𝑒𝑓) + 𝑎2 (
1

𝑇
−

1

𝑇𝑅𝑒𝑓
) + 𝑎3𝑙𝑛 (

𝑇

𝑇𝑅𝑒𝑓
) + 𝑎4(𝑇 − 𝑇𝑅𝑒𝑓) + 𝑎5(𝑇2 − 𝑇𝑅𝑒𝑓

2 ) + 𝑎6 (
1

𝑇2 −

1

𝑇𝑅𝑒𝑓
2 )Tab. 3.2Pitzer interaction coefficients for the system Na4Fe(CN)6-

H2O at 25 to 60°C 

Parameter P(25°C) a2 

β(0) (Na+,Fe(CN)6
4-) 0.3310 -0.000829 

β(1) (Na+,Fe(CN)6
4-) 7.0287 0.049566 

β(2) (Na+,Fe(CN)6
4-) -114 not determined 

Cγ (Na+,Fe(CN)6
4-) 0.001716 0.00055473 

α(1) (Na+,Fe(CN)6
4-) 1.4  

α (2) (Na+,Fe(CN)6
4-) 12  

With these parameters, the data in homogenous solutions could be represented well 

(Fig. 3.4, Fig. 3.5). 
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3.3.3 Solubility of sodium hexacyanoferrate(II) 

Data on the solubility of Na4Fe(CN)6 were presented by numerous investigators in the 

temperature range -1 to 104 °C (Tab. 3.3). Further data were published by Klenk et al. 

(1987) but their data source is not clear. The results are quite consistent up to a temper-

ature of about 80°C. This region is marked by the occurrence of Na4Fe(CN)6·10H2O. 

Above 81.5 °C a salt with less hydrate water becomes stable (Farrow 1926, Fig. 3.6). 

Neither Conroy (1898) nor Friend et al. (1929) reported a new salt although there is a 

remarkable bend in their solubility data at this temperature as well. The number of water 

molecules has not been determined but the independence of the solubility from temper-

ature leads to the assumption that the salt is free of hydrate water (as observed for other 

Na 2:1 salts such as Na2SO4). Between -1 and 80°C the solubility may be calculated 

from the empirical formula (3.2). 

𝑚𝑠𝑎𝑡 (Na4Fe(CN)6·10H2O)

= 0,678 + 0,06009(𝑇 − 𝑇𝑅) − 0,000241(𝑇2 − 𝑇𝑅
2) + 3,79

· 10−7(𝑇3 − 𝑇𝑅
3) 

(3.2) 

At 25°C, the solubility is 0.678 mol/kg. 

 

Fig. 3.6 Solubility in the system Na4Fe(CN)6-H2O 
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Tab. 3.3 Data on the solubility of Na4Fe(CN)6 in water 

Source Temperature range  
[°C] 

No. of data points 

Conroy (1898) 18-98 19 

Harkins and Pearce (1916) 25 1 

Farrow (1926) 25-100 9 

Farrow (1927) -1 1 

Friend et al. (1929) 0 – 104 36 

Fleysher and Osokoreva (1935a) 25 1 

Fleysher and Osokoreva (1935b) 80 1 

Using the Parameters developed above the solubility constant may be expressed by the 

following equation: 

log K (Na4Fe(CN)6·10H2O) = -5,100 + 1139 ln (T/TR) -7,744 (T-TR) + 0,006641 (T2-TR
2).  

In the same manner, the solubility constant was calculated for the water-free 

Na4Fe(CN)6. The quite scattered data from Friend et al. (1929) were omitted. 

log K (Na4Fe(CN)6) = -1,77 + 0,0681 (T-TR).  

The solubility is calculated very well even at temperatures that are beyond those used 

for the determination of the interaction parameters (Fig. 3.6). 

3.4 The system K4Fe(CN)6-H2O 

3.4.1 Previous thermodynamic investigations 

Robinson (1937) was the first to determine the vapour pressure of K4Fe(CN)6 solutions 

using the isopiestic method. His measurements concentrate on 25°C. At the same time, 

Bovalini and Fabris (1937) measured the vapour pressure of saturated solutions between 

25 and 104°C. Adie (1891) and Berkeley et al. (1909) determined the osmotic pressure 

at 15 and 0°C, respectively. Several measurements of the freezing point depression were 

performed at the turn of the 19th century that could be used as complementing infor-

mation (Guthrie 1878, Jones 1906, Noyes and Johnston 1909, Fabris 1921). 
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3.4.2 Water activities of solutions in the system K4Fe(CN)6-H2O 

34 solutions of K4Fe(CN)6 were equilibrated. The results are summarized in Tab. 9.5. 

Some experiments at 60°C resulted in cloudy solutions or precipitation. The long test 

duration (up to several months for all three temperatures) and the repeated contact with 

atmospheric oxygen led to partial decomposition of the hexacyanoferrates. Such exper-

iments were excluded from further evaluation. 

Discussion 

Our three lines of isopiestically determined osmotic coefficients at 25, 40 and 60°C are 

only comparable to the measurements of Robinson (1937). Both Berkeley et al. (1909) 

and Bovalini and Fabris (1937) published quite scattered point groups that obviously are 

of lower quality (not shown in Fig. 3.7). Robinson’s data at 25°C differ from ours at con-

centrations below 0.55 mol/kg. The reason for this observation is not obvious. Robinson 

(1937) published only interpolated data while the original composition of equilibrium con-

centrations are not available. Moreover, his last point at the highest concentration is well 

above the solubility of K4Fe(CN)6·3H2O at this temperature. 

The three data lines are in equal distance at concentrations above 0.1 mol/kg. A set of 

Pitzer ion interaction parameters was developed based on our experimental results and 

the data of Robinson (1937). As has been done for the system Na4Fe(CN)6-H2O, the 

parameter β(2) for the interaction between K+ and Fe(CN)6
4- was introduced to reflect the 

complex formation between the two ions at low ionic strength. It was calculated from the 

complex formation constant log β1 = 2,35 (Eaton et al. 1967, similar values determined 

by Cohen and Plane 1957, Robertis et al. 1984). 

β(2) 
K+,Fe(CN)64- = β1/2 = -112 

With these parameters, the data in homogenous solutions could be represented well 

(Fig. 3.7). 
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Tab. 3.4 Pitzer interaction coefficients for the system K4Fe(CN)6-H2O at 25 to 

60°C 

Parameter P(25°C) T-TR 

β(0) (K+,Fe(CN)6
4-) 0.3074 0.001794 

β(1) (K+,Fe(CN)6
4-) 6.4075 0.037576 

β(2) (K+,Fe(CN)6
4-) -112 not determined 

Cγ (K+,Fe(CN)6
4-) -0.005608 1.938E-05 

α(1) (K+,Fe(CN)6
4-) 1.4  

α (2) (K+,Fe(CN)6
4-) 12  

 

Fig. 3.7 Osmotic coefficients of K4Fe(CN)6 solutions at 25 to 60°C 

3.4.3 Solubility of potassium hexacyanoferrate(II) 

Most literature data on the solubility of K4Fe(CN)6 in water are well consistent (Tab. 3.5, 

Fig. 3.8). Between 0 and 100°C, there is an almost linear increase. The data of Conroy 

(1898) as well of Harkins and Pearce (1916) are somewhat too low. Up to a temperature 

of 87,3°C, K4Fe(CN)6 crystallises with three water molecules. At higher temperature, the 

salt is free of hydrate water. Careful investigation by Vallance (1927) showed a weak 

breaking point at about 17.7°C but no crystallographic or chemical difference could be 
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found between the solids appearing before and after this temperature. At 25°C, the sol-

ubility amounts to 0.857 mol/kg. 

Tab. 3.5 Data on the solubility of K4Fe(CN)6 in water 

Source 
Temperature range  
[°C] No. of data points 

Conroy (1898) 22-97 5 

Harkins and Pearce (1916) 25 1 

Fabris (1921) 0-100 15 

Vallance (1922) 10-25 6 

Farrow (1926) 25-100 6 

Vallance (1927)  10-25 7 

Fabris (1931) 86-93 5 

Fabris (1932) 70-104 24 

Bovalini and Fabris (1933) -2-104 9 

Tettamanzi (1933) 18 1 

Regner and Baley (1957) 15-80 4 

 

Fig. 3.8 Solubility in the system K4Fe(CN)6-H2O 

Using the Parameters developed above the solubility constant may be expressed by the 

following equation: 

log K (K4Fe(CN)6·3H2O) = -5,204 + 0,0984 (T-TR) -0,0001100 (T2-TR
2).  
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The solubility is calculated very well even at temperatures that are beyond those used 

for the determination of the interaction parameters 

3.5 The system Mg2Fe(CN)6-H2O 

3.5.1 Previous thermodynamic investigations 

So far, there have been neither solubility nor vapour pressure measurements of magne-

sium Hexacyanoferrate(II) solutions. Two measurements of the osmotic pressure by 

Berkeley et al. (1916) suffer from the same issues as Berkeley’s other measurements 

and are not very reliable. The heat of dilution for some very diluted solutions has been 

determined by Langer and Miederer 1956. 

It has been found that there is considerable complex formation between Mg2+ and 

Fe(CN)4
2+ as it could be expected for a 2:4 system (e.g. Aruga 1982). 

3.5.2 Water activities of solutions in the system Mg2Fe(CN)6-H2O 

In total, 42 solutions of Mg2Fe(CN)6 were brought into equilibrium at 25, 40 and 60°C. 

The results are summarized in Tab. 9.1. Some experiments at 60°C resulted in cloudy 

solutions or precipitation. Such experiments were excluded from further evaluation. 

Discussion 

Our three lines of isopiestically determined osmotic coefficients at 25, 40 and 60°C are 

only comparable to the measurements of Berkeley et al. (1916), from which they differ 

considerably. While our observed osmotic coefficients at 25 and 40°C lie close to each 

other, data at 60°C are considerably lower. But there is no hint that the data that were 

produced in different experiments are consistently wrong. 

The magnesium ion forms a strong complex with hexacyanoferrate(II).  

Mg2++ Fe(CN)6
4- ⇌ MgFe(CN)6

2- 



 

B-24 

Several authors determined the formation constant and found consistent values (Tab. 

3.6). Based on the data of Jackman and Lister (1975) between 15 and 35 the tempera-

ture dependence may be written as 

log β1 = 3.77 -70.5 (T-TR). 

Tab. 3.6 Equilibrium constant for the formation of the complex formation 

Source Temperature [C] log β1 

Cohen and Plane (1957) 25 3.81 

Jackman and Lister (1975) 15.2 

24.8 

35 

3.659 

3.766 

3.866 

Hedwig and Watson (1981) 25 3.77 

Aruga (1982) 25 3.77 

Due to the strong effect of ionic strength on the activity coefficient of Fe(CN)4- the Mag-

nesium hexacyanoferrate complexes have only a limited stability field. In Mg2Fe(CN)6 

solutions about 0.1 mol/kg they are not expected to exist in significant concentrations. 

A set of ion interaction parameters was developed based on isopiestic data. The calori-

metric data of Langer and Miederer (1956) were omitted since the concentration range 

of their measurements did not coincide with any other data and the potential effects of 

complex formation could not be evaluated. The parameter β(2) was calculated from the 

complex formation constant as decribed above. 

Using the parameters in Tab. 3.2, the experimental results are represented quite well, 

but rising deviations exist at the highest concentrations. The calculated line at 40° only 

in part corresponds with the data points. This is an indication that either the results at 

40°C or 60°C are erroneous. The overall impression is that the underlying chemistry is 

not well reflected by the simple Pitzer model. More research is needed to understand the 

extent of complexation in concentrated Mg2Fe(CN)6 solutions. 
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Tab. 3.7 Pitzer interaction coefficients for the system Mg2Fe(CN)6-H2O at 25 to 

60°C 

Parameter P(25°C) ln(T/TR) T-TR 

β(0) (Mg2+, Fe(CN)6
4-) 2.0437  0.000289 

β(1) (Mg2+,Fe(CN)6
4-) 57.5982 (α1=2)  0.210230 

β(2) (Mg2+,Fe(CN)6
4-) -2918 (α2=12) 6259727 n.d. 

Cγ (Mg2+,Fe(CN)6
4-) -0.08142  n.d. 

α(1) (Mg2+,Fe(CN)6
4-) 1.4   

α (2) (Mg2+,Fe(CN)6
4-) 12   

 

Fig. 3.9 Osmotic coefficients of Mg2Fe(CN)6 solutions at 25 to 60°C 

3.5.3 Solubility of magnesium hexacyanoferrate(II) 

A thermogravimetric investigation by Cappellina and Bubani (1954) found that the num-

ber of water molecules in the solid compound at 20°C is nine. At about 85°C it decom-

poses to Mg2Fe(CN)6·7H2O, two more molecules are lost at about 110°C. 
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However, solubility measurements in the system MgCl2-Mg2Fe(CN)6-H2O evaluated by 

the Schreinemakers method revealed that the solid in equilibrium with the solutions at 

low MgCl2 concentration had the composition Mg2Fe(CN)6·11H2O. Its solubility at 25°C 

was 1.38 mol/kg.  

Only one source could be found that reported a solubility for Mg2Fe(CN)6 (Kunze 2004). 

No primary source is given. The solubility is given as 330 g/l but in absence of a density, 

this value cannot be recalculated into a molality. The density of the saturated solution in 

our laboratory was about 1.22 kg/l. This would lead to a molality of about 1.42 mol/kg 

which is very close to our result. 

At the concentration of 1.38 mol/kg, the calculated ion activity product is 

Log K = -9.32 

Originally, it was planned to extend the solubility measurements in this system to higher 

temperatures as well. The serious problems in understanding the underlying chemistry 

and modelling of this system (see below) led to the conclusion that speciation must better 

be understood in the first place. 

3.6 The system Na3Fe(CN)6-H2O 

3.6.1 Water activities of solutions in the system Na3Fe(CN)6-H2O 

So far, the water activity of Na3Fe(CN)6 has not been tested before. Our results at 25, 

40, and 60°C are shown in Fig. 3.10. They do not differ very much at different tempera-

tures. Only at concentrations above 2 mol/kg, the branches of osmotic coefficients 

spread slightly. For the calculation of ion interactions coefficients, the calorimetric meas-

urements of Lange and Secrest (1957) in very diluted solutions were not considered as 

they could not be brought into coherence with our results. 

Based on the isopiestic data ion interaction coefficients in Tab. 3.8 were derived. They 

represent the experimental data very well (Fig. 3.10). 
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Tab. 3.8 Pitzer interaction coefficients for the system Na3Fe(CN)6-H2O at 25 to 

60°C 

Parameter P(25°C) T-TR 

β(0) (Na+, Fe(CN)6
3-) 0.4076 0.001862 

β(1) (Na+,Fe(CN)6
3-) 5.6800 0.014276 

C (Na+,Fe(CN)6
3-) -0.005507 -0.00012423 

α(1) (Na+,Fe(CN)6
3-) 2  

 

Fig. 3.10 Osmotic coefficients of Na3Fe(CN)6 solutions at 25 to 60°C 

3.6.2 Solubility sodium hexacyanoferrate(III) 

At room temperature sodium hexacyanoferrate(II) crystallizes as a dihydrate, 

Na3Fe(CN)6·2H2O (Neumark 1944, Katila et al. 1980). As stated above, we found that at 

about 4°C the solid may contain up to 14 molecules of water.  
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In his compilation, Kunze (2004) reported that the solubility of Na3Fe(CN)6 would be 

189 g/l but no primary source is given or the composition of the solubility limiting phase. 

Bette (1837) published data on the solubility in “cold” and “hot” water (recalculated as 

0.67 and 2.37 mol/kg). At 25°C, we found that the solubility is about 3.27 mol/kg. This 

results in a solubility constant of log K = 2.20. 

3.7 The system K3Fe(CN)6-H2O 

3.7.1 Water activities of solutions in the system K3Fe(CN)6-H2O 

Among all hexacyanoferrate salts, potassium hexacyanoferrate(III) has been investi-

gated most intensively. Scientific work included isopiestic, osmotic, potentiometric, calo-

rimetric, and freezing point measurements (Tab. 3.9). Additional isopiestic measure-

ments were performed in this study. 

Tab. 3.9 Thermodynamic data on K3Fe(CN)6 solutions 

Source Method 
Temperature 
[°C] 

Guthrie (1878) 

Freezing point de-

pression <0 

Kistiakowsky (1890) 

Freezing point de-

pression <0 

Jones (1906) 

Freezing point de-

pression <0 

Bedford (1910) 

Freezing point de-

pression <0 

Berkeley et al. (1916) Osmotic pressure 0 

Robertson and La Mer (1931) 

Freezing point de-

pression <0 

Robinson and Levien (1946) Isopiestic 25 

Lange and Miederer (1956) Dilution enthalpy 25 

Hepler et al. (1960) Solution enthalpy 25 

Malatesta et al. (1994) Potentiometric 25 

For the determination of interaction coefficients, only the potentiometric and isopiestic 

measurements were used. It became clear that especially the potentiometric data could 
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only be fitted by applying a β(2) value to express the weak but notable complex formation 

between K+ and Fe(CN)6
3- at low ionic strengths. In a first approach, the medium value 

for the complex formation constant was calculated from five literature sources (Tab. 3.9). 

This strongly improved the agreement of predicted and experimental data. However, op-

timizing β(2) further improved the situation (Fig. 3.12, Fig. 3.13,). Even for 0°C and lower, 

for which data have not been taken into account, experimental and calculated data cor-

respond very well (Fig. 3.11). The final set of parameters is given in Tab. 3.11.  

Tab. 3.10 Complex formation constant for KFe(CN)6
2- 

Source Method Value 

James and Monk (1950) Conductivity 1,2 

Tanaka et al. (1966) IR Spectroscopy 1,3 

Rutkovskii and Mironov (1967) Solubility 0,9031 

Eaton et al. (1967) Potentiometric 1,46 

Lemire and Lister (1976) Conductivity 1,4771 

Dehury et al. (2012) Conductivity 1,50 

Medium value (without Rutkovskii 
and Mironov 1967)  1,39 

Calculated from β(2)= -14,3004 (this 
work)  1,46 
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Fig. 3.11 Osmotic coefficients of K3Fe(CN)6 solutions at or below 0°C  

 

Fig. 3.12 Osmotic coefficients of K3Fe(CN)6 solutions at 25, 40 and 60°C 
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Fig. 3.13 Activity coefficients of K3Fe(CN)6 at 25°C 

Tab. 3.11 Pitzer interaction coefficients for the system K3Fe(CN)6-H2O at 25 to 

60°C 

Parameter P(25°C) T-TR 

β(0) (K+, Fe(CN)6
3-) 0.3394 0.002825 

β(1) (K+, Fe(CN)6
3-) 4.6527 0.009299 

β(2) (K+, Fe(CN)6
3-) -14.30 not determined 

Cγ (K+, Fe(CN)6
3-) -0.01304 -0.0001670 

α(1) (K+, Fe(CN)6
3-) 2  

α(2) (K+, Fe(CN)6
3-) 12  

3.7.2 Solubility of potassium hexacyanoferrate(III) 

The solubility of K3Fe(CN)6 in aqueous solutions has been investigated by a couple of 

groups (Tab. 3.12). Some data are given in Klenk et al. (1987), but their source is not 

clear. In the temperature range from 0 to 99°C only the anhydrous salt is stable (Fig. 

3.14). The solubility can be expressed by the formula 

csat [mol/kg] = 1,491 + 0,052148 (T-TR) – 0,00005268 (T2-TR
2) 
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while the formula for the solubility constant reads as follows: 

log K = -1,477 + 0,18202 (T-TR) - 0,00026384 (T2-TR
2) 

Tab. 3.12 Data on the solubility of K3Fe(CN)6 in water 

Source 
Temperature range  
[°C] No. of data points 

Friend and Smirles (1928) 0,1-99 18 

Akerlof (1937) 25 1 

Regner and Baley (1957) 15-80 4 

 

Fig. 3.14 Solubility of K3Fe(CN)6 between 0,1 and 99 °C 

3.8 The system Mg3[Fe(CN)6]2-H2O 

3.8.1 Previous investigations and water activity of Mg3[Fe(CN)6]2 solutions 

So far, there was only one investigation of aqueous solutions containing Mg3[Fe(CN)6]2: 

a potentiometric study by Malatesta et al. (1996) at 25°C. Mg2+and Fe(CN)6
3-  form a 

complex MgFe(CN)6
-, whose stability has been determined a few times (Tab. 3.13). An-

other measurement by Mironov and Rutkovskii (1966) could not be evaluated further as 
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it was conducted in a 3 M LiClO4 solution. The results differ considerably and do not give 

a consistent picture (Tab. 3.13).  

Tab. 3.13 Complex formation constant for Mg3[Fe(CN)6]2- 

Source Method K 

Gibby and Monk (1952) Conductivity 3.21 

Tanaka et al. (1966) IR-Spectroscopy 2.79 

Aruga (1982) Calorimetry 1.44 

This work (calculated from β(2) = -80,98)  2.21 

The water activity of Mg3[Fe(CN)6]2 solutions was investigated at 25, 40 and 60°C (Tab. 

9.11). The three lines of osmotic coefficients lie close to each other (Fig. 3.15). 

 

Fig. 3.15 Osmotic coefficients of Mg3[Fe(CN)6]2 solutions 

Ion Interaction coefficients were calculated based on our measurements. It was not suf-
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be found in Tab. 3.14. With their help, the potentiometric as well as the isopiestic data 

could be modelled quite well (Fig. 3.15, Fig. 3.16). 

Tab. 3.14 Pitzer interaction coefficients for the system Mg3[Fe(CN)6]2-H2O at 25 

to 60°C 

Parameter P(25°C) 

β(0) (Mg2+, Fe(CN)6
3-) 1.66 

β(1) (Mg2+, Fe(CN)6
3-) 21.1446 

β(2) (Mg2+, Fe(CN)6
3-) -80.9787 

C (Mg2+, Fe(CN)6
3-) -0.05422 

α(1) (Mg2+, Fe(CN)6
3-) 2 

α(2) (Mg2+, Fe(CN)6
3-) 12 

 

Fig. 3.16 Activity coefficients of Mg3[Fe(CN)6]2 at 25°C 

3.8.2 Solubility of magnesium hexacyanoferrate(III) 

No information on the solubility of Mg3[Fe(CN)6]2 in water could be found. Williams (1948) 

reported that Mg3[Fe(CN)6]2 crystallises with 10 water molecules while Jiménez-Gallegos 

et al. (2012) reported 13. Our investigation of the pure phase resulted in approximately 

14 mols per unit. A Schreinemakers evaluation of the solubilities in the system MgCl2-
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Mg3[Fe(CN)6]2-H2O lead to a mean water content of 13 per formula unit, so that it may 

be assumed that Mg3[Fe(CN)6]2·13H2O is indeed the stable phase at 25°C. The solubility 

of the pure phase was found to be 0.87 mol/kg. The corresponding solubility constant for 

the reaction 

3 Mg2+ + 2 Fe(CN)6
3- → Mg3[Fe(CN)6]2·13H2O 

is log K = -2,20 

3.9 The hexacyanoferrate acids H4Fe(CN)6 and H3Fe(CN)6 

At low pH values, hexacyanoferrate(II) and hexacyanoferrate(III) are transformed into 

hydrogen compounds and finally into acids.  

x H+ + Fe(CN)6
4-

 → HxFe(CN)6
4-x (x=1-4) 

x H+ + Fe(CN)6
3-

 → HxFe(CN)6
3-x (x=1-3) 

Both acids, H4Fe(CN)6 and H3Fe(CN)6, are strong so that the formation of hydrogen hex-

acyanoferrate takes place only at considerable acidity (Tab. 3.15, Tab. 3.16). 

Tab. 3.15 Dissociation constants of H4Fe(CN)6  

Source log K2 log K3 log K4 

Jordan and Ewing (1962)  -2.22 -4.17 

Hanania et al. (1967)  -2.30 -4.28 

Crozes et al. (2012) 0 -2.0 -3.9 

Tab. 3.16 Dissociation constants of H3Fe(CN)6  

Source log K1 log K2 log K3 

Domingo et al. (1990) -6.25 -3.23 -0.6 
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4 Ternary systems containing hexacyanoferrate(II) or hexa-

cyanoferrate(III) 

4.1 The system NaCl-Na4Fe(CN)6-H2O 

Previous investigations of the system NaCl-Na4Fe(CN)6-H2O are listed in Tab. 4.1. They 

include potentiometric and solubility measurements in the temperature range 5 to 90°C. 

Conroy’s data probably includes too high values for hexacyanoferrate concentrations as 

the author assumed himself. The source of William’s data is uncertain so that they cannot 

be relied upon as well. According to Fleysher and Osokoreva (1935a), 

Na4Fe(CN)6·10H2O is the only hexacyanoferrate solid up to 80°C.  

To confirm other data, we have conducted some additional measurements. For that pur-

pose small amounts of a NaCl stock solution, solid Na4Fe(CN)6·10H2O and water were 

mixed in 1.5 ml vials and shaken on a rotating plate in an air thermostat at 25, 40, and 

60°C for at least two weeks. The temperature was in the range of ± 1°C. The final solu-

tions were analysed by ICP-OES and titration with silver nitrate (Cl). It was found that 

hexacyanoferrate leads to a systematic but reproducible bias in chloride titration. The 

resulting apparent chloride concentration expressed in mol/l is indeed the total of the 

actual chloride concentration plus the Fe(CN)6 concentration times four. The experi-

mental results are shown in Tab. 9.39 to Tab. 9.41 and in Fig. 4.1 and Fig. 4.2. 

Tab. 4.1 Previous solubility investigations of the system NaCl-Na4Fe(CN)6-H2O 

Source 

Method Temperature 
range  
[°C] 

No. of 
data 
points 

Conroy (1898) solubility 21-90 2 

Williams (1948) Source unclear solubility 15.5 4 

Fleysher and Osokoreva (1935a) solubility 25 12 

Fleysher and Osokoreva (1935b) solubility 80 9 

Silvester and Rock (1973) potentiometric 25 9 

This work solubility 25  12 

This work solubility 40 19 

This work solubility 60 5 
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Fig. 4.1 Solubility in the system NaCl-Na4Fe(CN)6-H2O at 15.5 to 60°C 
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Fig. 4.2 Solid/liquid equilibria in the system NaCl-Na4Fe(CN)6-H2O at 40°C 

4.2 The system KCl-K4Fe(CN)6-H2O 

This system was investigated by Conroy (1898) at 21 and 99 °C but the author assumed 

that his ferrocyanide values may have been too high. A solubility measurement was con-

ducted by Bischofer et al. (2016) but later evaluation showed that the analytical potas-

sium concentration was incorrect. The correct solution composition could be obtained 

from the mass balance taking into account the weighed masses of KCl, H2O and 

K3Fe(CN)6 used for preparing the batches. The results are shown in Tab. 9.42 and Fig. 

4.3.  

 

Fig. 4.3 Solubility in the system KCl-K4Fe(CN)6-H2O at 25°C 
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4.3 The system MgCl2-Mg4Fe(CN)6-H2O 

The system MgCl2-Mg4Fe(CN)6-H2O has not been investigated before. Experiments 

were conducted in the same manner as described before in the system NaCl-

Na4Fe(CN)6-H2O. Also, the wet solids were analysed chemically (Tab. 9.43). The com-

position of the solids was evaluated using the Schreinemakers method. Up to a MgCl2 

concentration of about 2.4 mol/kg Mg2Fe(CN)6·11H2O is the stable solid phase. At higher 

concentrations, double salts with the formula xMgCl2.Mg2Fe(CN)6·yH2O form. There 

seem to occur two different compounds. At least above 3 mol/kg MgCl2 the equilibrium 

phase has approximately the following composition: 

MgCl2: 11±0,2 mol-% 

Mg2Fe(CN)6: 3.5 ± 0.5 mol-% 

H2O: 85 ± 1 mol-% 

The ideal formula would be 3MgCl2.Mg2Fe(CN)6·23H2O 

 

Fig. 4.4 Solubility in the system MgCl2-Mg2Fe(CN)6-H2O at 25°C 

1E-08

0,0000001

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

10

0 1 2 3 4 5 6 7

M
g 2

Fe
(C

N
) 6

[m
o

l/
kg

]

MgCl2 [mol/kg]

This work 1st exp.

This work 2nd exp.

Calculated



 

B-41 

4.4 Calculation of Pitzer ion interaction coefficients for the systems Mn+- 

Cl- - Fe(CN)6
4- -H2O 

Experimental and literature data from the systems NaCl-Na4Fe(CN)6-H2O, KCl-

K4Fe(CN)6-H2O and MgCl2-Mg2Fe(CN)6-H2O were combined to calculate ternary inter-

action coefficients. From the system MgCl2-Mg2Fe(CN)6-H2O only those data could be 

used where Mg2Fe(CN)6·11H2O was the equilibrium phase. The potentiometric results 

of Silvester and Rock (1973) in the system NaCl-Na4Fe(CN)6-H2O could not be used as 

they deviated significantly from predicted activity coefficients. The solubility investiga-

tions of Fleysher and Osokoreva (1935a) at 80°C were not included in parameter fitting 

as the temperature exceeded the temperature range of data used for the determination 

of binary coefficients. 

The resulting set of interaction coefficients is listed in Tab. 4.2. The solubility in the NaCl-

Na4Fe(CN)6-H2O is well represented at all temperatures. Although they were excluded 

from the parameter optimization, the solubility data of Fleysher and Osokoreva (1935a) 

at 80°C could be reproduced fairly well if it was assumed that the solubility limiting phase 

above 2.5 mol/kg NaCl was not Na4Fe(CN)6·10H2O but Na4Fe(CN)6. However, at me-

dium concentrations the calculated solubility of Na4Fe(CN)6·10H2O is slightly too low. 

This is especially visible at 25°C (Fig. 4.1). A similar effect occurs in the system KCl-

K4Fe(CN)6-H2O. In both cases, it may be assumed that there is a change of chemistry in 

the aqueous phase because of the increasing ratio of M/Fe(CN)6. Complex formation is 

a well-known fact both in Na4Fe(CN)6 and K4Fe(CN)6 solutions, but so far it has not been 

investigated and taken explicitly into account in ternary systems.  

Such a phenomenon is even more relevant in the system MgCl2-Mg2Fe(CN)6-H2O (Fig. 

4.4). While it was possible to force the calculated line through the observed points where 

Mg2Fe(CN)6.11H2O was present, this could not be accomplished in the stability region of 

the double salt. The calculated solubility decreased much faster than observed in the 

experiment. Some hypothetical tests revealed that the solubility would better be repre-

sented by a salt whose reaction involves one unit of MgCl2 instead of three although this 

is in contradiction to the analytical composition of the solid: A candidate would be 

3Mg2+ + 2 Cl- + Fe(CN)6
4- + xH2O → MgCl2·Mg2Fe(CN)6.xH2O  

Another explanation would be that the main hexacyanoferrate species has a different 

stoichiometry such as Mg2Fe(CN)6
 (aq). 
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3Mg2+ + 6 Cl- + Mg2Fe(CN)6
 (aq) + 23 H2O → 3MgCl2·Mg2Fe(CN)6.23H2O 

Neither of the two concepts could be proven so that for the moment the activity coefficient 

of hexacyanoferrate in MgCl2 above 2.5 mol/kg cannot be calculated. 

 Tab. 4.2 Pitzer interaction coefficients for the system MClx-MyFe(CN)6-H2O at 

25 to 60°C 

Parameter P(25°C) T-TR 

Ψ (Na+,Cl-, Fe(CN)6
4-) -0.04086 0.003924 

Ψ (K+,Cl-, Fe(CN)6
4-) -0.06689 Not determined 

Ψ (Mg2+, Cl-, Fe(CN)6
4-) 0.02901 Not determined 

θ (Cl-, Fe(CN)6
4-) 0.7598 -0.01182 

4.5 The system NaCl-Na3Fe(CN)6-H2O 

No information was found in the literature on the system NaCl-Na3Fe(CN)6-H2O. Solubil-

ity measurements were undertaken to close this gap (Tab. 9.44). As documented above, 

the synthesized solid Na3Fe(CN)6 contained small but considerable amounts of K. After 

dissolution the liquid phase contained about 0.2 to 1.8 mol-% K in relation to Na. In cases 

where Na3Fe(CN)6·2H2O was the solubility limiting phase, the solid contained 15 to 25% 

K. If halite was present the content was close to zero. Due to the impact of potassium on 

the composition and solubility of phases in this system, the results were not further used. 

Tab. 9.44 contains the analytical results that should be treated with caution. 

Also, some isopiestic measurements were conducted. Water activity measurements 

have the advantage of working with homogenous systems so that the potassium con-

centration can be derived from the composition of the stock solution. A new stock solution 

was prepared for this purpose. It had a K/(Na+K) ratio of 2.0%. The system was investi-

gated by five consecutive isoactivity lines ate 25, 50 and 60°C. A final additional meas-

urement at 25°C could not be evaluated because most solutions turned turbid (probably 

due to decomposition). The isoactivity lines were found to be linear at all temperatures. 

Numerical results are presented Tab. 9.13 in the Annex.  
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Fig. 4.5 Isoactivity lines (examples) in the system NaCl-Na3Fe(CN)6-H2O at 25 

and 60°C 

4.6 The system KCl-K3Fe(CN)6-H2O 

This system has been investigated before by Akerlof (1937) and later by Bischofer et al. 

(2016). A closer consideration of the latter results revealed that the documented KCl 

concentrations were too high and needed to be corrected. This could be done by con-

sidering the weighed amounts of added KCl. The corrected results are listed in Tab. 9.45. 
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Fig. 4.6 Solubility in the system KCl-K3Fe(CN)6-H2O at 25°C 

4.7 The system MgCl2-Mg3[Fe(CN)6]2-H2O 

The system MgCl2-Mg3[Fe(CN)6]2-H2O was investigated for the first time. Analysis of the 

liquid and solid phase and subsequent Schreinemakers analysis showed that 

Mg3[Fe(CN)6]2·11H2O was the limiting phase at all MgCl2 concentrations (Tab. 9.46). Its 

solubility decreases strongly with increasing MgCl2 concentration (Fig. 4.7). 
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Fig. 4.7 Solubility in the system MgCl2-Mg3[Fe(CN)6]2-H2O at 25°C 

4.8 Calculation of Pitzer ion interaction coefficients for the systems Mn+- 

Fe(CN)6
3- -H2O 

Based on the above-mentioned experimental data ternary ion interaction parameters 

were derived for the systems NaCl-Na3Fe(CN)6-H2O, KCl-K3Fe(CN)6-H2O and MgCl2-

Mg3[Fe(CN)6]2-H2O (Tab. 4.3). For all systems, the parameters set allowed very good 

modelling of the observed solutions properties (Fig. 4.6, Fig. 4.5, Fig. 4.7). 

Tab. 4.3 Pitzer interaction coefficients for the systems MClx-MyFe(III)(CN)6-H2O 

at 25 to 60°C 

Parameter P(25°C) T-TR 

Ψ (Na+,Cl-, Fe(CN)6
3-) 0.012461 -0.00204365 

Ψ (K+,Cl-, Fe(CN)6
3-) 0.0231949 Not determined 

Ψ (Mg2+, Cl-, Fe(CN)6
3-) 0.0145163 Not determined 

θ (Cl-, Fe(CN)6
3-) 0.0951501 0.0115566 
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5 Determination of the redox properties of saline solutions 

5.1 Relation between background concentration and the apparent redox 

potential 

Investigations in previous research projects have shown that the observed redox poten-

tial measured with a typical cell consisting of a Pt electrode and a reference electrode 

(Ag|AgCl) depends on the concentration of background salt such as NaCl, KCl or MgCl2 

(Hagemann et al. 2014, Bischofer et al. 2016). The main reason for this behaviour is the 

rising ionic strength that causes an increase of the liquid junction potential between the 

investigated solution and the inner solution within the reference electrode (typically 3 M 

KCl). As a result, the redox potential measured in concentrated salt solutions not only 

reflects the equilibrium of redox pairs, more exactly the change of their activity coeffi-

cients in solution but also includes a concentration-dependent impact (Fig. 5.1).  

 

Fig. 5.1 Change of observed ORP (Eh) of a solution with a constant ratio of ferri-

cyanide and ferrocyanide but increasing NaCl concentration 

The situation is similar with pH measurements. The pH as a single ion activity can only 
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near-zero ionic strength. Parts of the conventions are assumptions regarding the liquid 

junction potential and the value of the single ion activity coefficient of Cl-.  

In concentrated salt solutions (I > 0.1 mol/kg), these basic assumptions are no longer 

valid. Under such conditions, the pH itself loses its physical meaning and turns to be a 

mere construction with a weak relation to reality. However, the concentration of H+ may 

be measured with an ordinary pH-electrode combination and suitable calibration. The 

resulting pcH is an appropriate and thermodynamically sound alternative measure. 

𝑝𝑐𝐻 = 𝑝𝐻𝑜𝑏𝑠 + 𝛥𝑝𝐻 (5.1) 

Here, ΔpH is an empirical function related to the concentration of background electrolytes 

A similar approach has been developed by Hagemann et al. (2014) and later modified 

by Bischofer et al. (2016). As redox measurements always relate to an equilibrium be-

tween at least one pair of oxidation/ reduction sensitive solutions species (Ox/Red)1 a 

slightly different approach needed to be found that is linked to a principally measurable 

solution property.  

The observed cell potential is a combination of the two half-cell potentials (redox equilib-

rium at the Pt electrode E0(Ox/Red) and reference electrode E0(Ag|AgCl) and the liquid 

junction potential. ELJ, between the measuring solution and the KCl solution in the refer-

ence electrode 

𝐸 = 𝐸0 +
𝑅𝑇

𝐹
𝑙𝑛

𝑐𝑂𝑥

𝑐𝑅𝑒𝑑
+

𝑅𝑇

𝐹
𝑙𝑛

𝛾𝑂𝑥

𝛾𝑅𝑒𝑑
+ ∆𝐸𝐿𝐽 

(5.2) 

The value of ELJ is unknown as well as the exact value of the ratio of individual activity 

coefficients of the two iron cyanates. Except under defined circumstances that are not 

given here, individual activity coefficients cannot be determined.  

If the ionic strength of the solution differs from zero, the observed redox potential Eh 

starts deviating from the standard cell potential E0. The purpose of the present work is to 

 

1 Also expressed by pε, the activity of a hypothetical free electron 
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find an empirical expression that reliably describes ΔEh depending on the background 

electrolyte concentration. 

5.2 Redox measurements in mixed ferricyanide/ ferrocyanide solutions 

5.2.1 Choice of the redox couple 

To investigate the impact of ionic strength ion the observed redox potential a redox cou-

ple needs to be chosen that allows measurements at pH values relevant for repository 

systems (neutral to alkaline), The redox reaction should be reversible and fast, and the 

solubility not too low in concentrated NaCl and MgCl2 solutions. Although it is possible to 

avoid air contact to some extent, the redox species should not be too sensible with re-

spect to oxygen. Finally, it should be possible to derive a model for describing the activity 

coefficients of the redox species. There are not many redox couples that fulfil these con-

ditions. In the first experiments by Hagemann et al. (2014), Fe2+/Fe3+ was chosen. Be-

cause of the strong complex formation of Fe3+ with OH- very acidic conditions had to be 

maintained in the experiments. Even then, the formation of hydroxo complexes could not 

be avoided completely. Moreover, complex formation with chloride and sulphate further 

complicated the interpretation. Principally organic substances such as quinone and its 

derivates are interesting, but some of them are almost insoluble in water and deriving 

activity coefficients for poorly soluble organics requires much higher efforts than availa-

ble in this project. Among inorganic redox couples, the system hexacyanofer-

rate(II)/hexacyanoferrate(III) was the most promising. Na, K and Mg salts are well solu-

ble, they are stable at neutral pH and were at least in part, commercially available. Some 

thermodynamic data already existed so that we had a good starting point. A possible 

alternative could have been permanganate(VII)/manganate(VI) (MnO4
-/MnO4

2-), but too 

little was known about the properties and the stability of manganate(VI) solutions so that 

we decided to stick with hexacyanoferrates. 

5.2.2 Standard potential of the ferricyanide/ferrocyanide and the Ag, AgCl 

reference cells 

Combining a platinum electrode that indicates the equilibrium between ferricyanide and 

ferrocyanide and an Ag/AgCl reference electrode leads to the following formulation of 

the standard cell potential: 
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𝐸0 = 𝐸0(𝐹𝑒(𝐶𝑁)6
3−/𝐹𝑒(𝐶𝑁)6

4−) −  𝐸0(𝐴𝑔|𝐴𝑔𝐶𝑙) (5.3) 

The half-cell potential for the platinum electrode results from the standard potential for 

the ferricyanide/ferrocyanide reaction ( Hanania et al. 1967) 

𝐹𝑒𝐼𝐼𝐼(𝐶𝑁)6
3− + 𝑒− = 𝐹𝑒𝐼𝐼(𝐶𝑁)6

4− (5.4) 

𝐸0(𝐹𝑒(𝐶𝑁)6
3−/𝐹𝑒(𝐶𝑁)6

4−) = 0.355 𝑉 (25°C) (5.5) 

Temperature dependence was calculated from the entropy of the reduction (62,1 cal/ 

(mol K) (Nordstrom 1977).  

𝑑𝐸0

𝑑𝑇
= −

∆𝑆

𝑧𝐹
= 0,002693 

𝑉

𝐾
 

(5.6) 

The half-cell potential for the single junction silver/silver chloride with 3 M KCl as an inner 

electrolyte is provided by the producer of the electrode (Metrohm) 

−− ++ eClAg s)(
 )(sAgCl  (5.7) 

𝐸0(𝐴𝑔|𝐴𝑔𝐶𝑙) = 0.207 𝑉 (25°C) (5.8) 

The temperature dependence of the half-cell potential was calculated from tabulated val-

ues for E0 (Metrohm, Tab. 9.23) 

𝐸0(𝐴𝑔|𝐴𝑔𝐶𝑙) = 0.207 𝑉 − 0.707 (𝑇 − 25) − 9.41 10−4 (𝑇 − 25)2 −

1.37 10−5 (𝑇 − 25)3
  

(5.9) 

At 25°C, The standard cell potential E0 for the above-defined redox cell would be 

𝐸0 = 𝐸0(𝐹𝑒(𝐶𝑁)6
3−/𝐹𝑒(𝐶𝑁)6

4−) −  𝐸0(𝐴𝑔|𝐴𝑔𝐶𝑙) = 0.1634 𝑉 (5.10) 

The redox potential is normally expressed in relation to the standard hydrogen electrode: 

Eh. It is calculated by adding the potential of the silver reference electrode: 

𝐸ℎ = 𝐸 +  𝐸0(𝐴𝑔|𝐴𝑔𝐶𝑙) (5.11) 



 

B-51 

Thus, the Eh of a mixed solution with equal but near-zero concentrations of ferricyanide/ 

ferrocyanide would be 355 mV at 25°C.  

5.2.3 Impact of salinity on the apparent pH 

For the evaluation of redox measurements in saline solutions, the hydrogen (H+) con-

centration is an important auxiliary parameter. In contrast to the pH value, which is only 

defined in slightly mineralized waters and can be measured sufficiently reliably, the H+ 

concentration in any salt solution can be determined if suitable correction functions are 

available for converting the apparent pH value. Hagemann et al. (2014)have developed 

a coherent model for the solutions of oceanic salts which allows this conversion at 25°C. 

Such approaches are not available for higher temperatures. Additional measurements 

were necessary to extend these models to higher temperatures. 

Solutions were prepared that contained a known concentration of HCl and either NaCl 

or MgCl2. NIST pH standards (Alfa Aesar) were used to calibrate a Ross pH electrode at 

25, 40 or 60°C.  

In the measurements, a difference ΔpH occurs between the hydrogen concentration pcH 

and the apparent pH: 

∆𝑝𝐻 = 𝑝𝑐𝐻 − 𝑝𝐻 (5.12) 

Results of the measurements are summarized in Tab. 9.17ff. The empirical model used 

by Hagemann et al. (2014) to describe ΔpH at 25°C could not be applied to higher tem-

peratures. It was necessary to introduce another empirical parameter. 

∆𝑝𝐻 = 𝑎1𝑆𝐼𝑇(𝐼) + 𝑎2𝑄𝑀𝑋  (5.13) 

With 

𝑆𝐼𝑇(𝐼) = log 𝛾𝐻+ = −𝐴(𝑇)
√𝐼

1 + 1.5√𝐼
 

(5.14) 

𝑄𝑀𝑋 =
𝑐𝑀𝑐𝑋

∑ 𝑐𝑖𝑧𝑖
 (5.15) 
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𝐴(𝑇) = −8.945 +
356

𝑇
+ 1.4505 ln 𝑇 

(5.16) 

The formula for calculating the Debye-Hückel coefficient was presented by Bretti et al. 

(2006). The model parameters a1 and a2 are shown in Tab. 5.1. 

Tab. 5.1 Model parameters to calculate ΔpH in NaCl and MgCl2 solutions at 25, 

40 and 60°C 

T [°C] 

NaCl MgCl2 

a1 (SIT) a2 (Q) a1 (SIT) a2 (Q) 

25°C 0.399 0.366 0.573 1.108 

40°C 0.349 0.344 0.414 1.057 

60°C 0.377 0.315 0.527 0.985 

The empirical formula allows an excellent representation of ΔpH and thus a calculation 

of pcH at all NaCl and MgCl2 concentrations between 25 and 60°C (Fig. 5.2 and Fig. 

5.3). 

 

Fig. 5.2 Experimental and calculated ΔpH in NaCl solutions 
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Fig. 5.3 Experimental and calculated ΔpH in MgCl2 solutions 

5.2.4 Impact of pH on the redox potential 

Formula (5.4) does not contain an expression for the hydrogen activity so that there 

should be no influence of the pH on the cell potential. In the first set of experiments, this 

assumption was checked measuring the redox potential of solutions that contained equal 

amounts of K3Fe(CN)6 and K4Fe(CN)6 as well as a pH buffer that fixed the pH close to 7 

or 9. The observed redox potentials are the same within the margins of experimental 

uncertainty (Fig. 5.4). 
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Fig. 5.4 Observed redox potential of equimolar K3Fe(CN)6 K4Fe(CN)6 in solutions 

of NaCl at 25°C 

5.2.5 Measurement of the redox potential at fixed pH and increasing back-

ground concentrations 

The redox potential was measured in solutions of pure and mixed NaCl, MgCl2. Solutions 

of NaCl were prepared by dissolving solid NaCl in water and adding stock solutions of 

K3Fe(CN)6 and K4Fe(CN)6. These stock solutions had a concentration of about 0.5 mol/l. 

Aliquots were taken to prepare fresh measuring solutions after which the stock solutions 

were put into a freezer. The final concentration of the hexacyanoferrates in the measur-

ing solution was about 0.003 to 0.004 mol/l. In some solutions of higher MgCl2 concen-

trations lower amounts of hexacyanoferrates had to be used to avoid precipitation of 

insoluble magnesium hexacyanoferrate (II). 0.5 ml of a pH 6.86 phosphate buffer solution 

were added to 50 ml of the measuring solution to maintain stable pH conditions. MgCl2 

containing solutions were prepared by adding weighed amounts of an MgCl2 stock solu-

tion. The measuring solutions were filled in closed vials and placed in a bath thermostat 

at 25°, 40 or 60°C. Aliquots of the solutions were used for measurements at all temper-

atures. Their composition is shown in Tab. 9.24 ff. 

In all solutions, the pH was measured with a Ross pH electrode. Observed pH values 

were recalculated into pcH values using the method and parameters described in chapter 
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5.2.3. A Metrohm combination electrode was employed for determining the redox poten-

tial. The results are shown in Tab. 9.28. 

Up to about an ionic strength of about 1 mol/kg, the redox potential increased in the same 

way in NaCl, KCl and MgCl2 solutions (Fig. 5.5). At higher salt contents the increase is 

strongest in MgCl2, less strong in KCl and weakest in NaCl solutions. Few literature data 

are comparable to our measurements (Tab. 5.2). They fit very well with our results (Fig. 

5.5). 

Tab. 5.2 Previous measurements of the Fe(CN)6
3- / Fe(CN)6

4- redox potential in 

NaCl and KC solutions  

Source Solution type 

Kolthoff and Tomiscek (1935) NaCl, KCl 

Krulic et al. (1998) KCl 

Crozes et al. (2012) NaCl 

If the temperature is changed, the increase of the observed redox potential is similar 

although systematically shifted towards higher voltages (Fig. 5.6).  
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Fig. 5.5 Apparent redox potential of equimolar Fe(CN)6
4-/ Fe(CN)6

3- in NaCl, KCl 

and MgCl2 solutions at 25°C 

 

Fig. 5.6 Apparent redox potential of equimolar Fe(CN)6
4-/ Fe(CN)6

3- in NaCl solu-

tions at 25, 40 and 60°C 
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5.2.6 Redox potential in mixed NaCl/MgCl2 solutions 

Three series of experiments were conducted with mixed NaCl/MgCl2 solutions (Tab. 9.27 

Tab. 9.36 ff.). The purpose of these measurements was to check, whether the binary 

empirical models could also be applied to ternary solutions.  

The results show that the measured redox potentials depend linearly on the MgCl2 con-

tent (Fig. 5.7). 

 

Fig. 5.7 Apparent redox potential of equimolar Fe(CN)6
4-/ Fe(CN)6

3- in mixed 

NaCl/MgCl2 solutions at 25, 40 and 60°C 

5.2.7 Relationship between electrolyte concentration and the observed re-

dox potential 

The observed redox potential is a combination of the two half-cell potentials (Pt-and ref-

erence electrodes) and the liquid junction potential. ELJ, between the measuring solution 

and the KCl solution in the reference electrode 

𝐸ℎ𝑜𝑏𝑠 = 𝐸0 (𝐹𝑒(𝐶𝑁)6
3−/𝐹𝑒(𝐶𝑁)6

4−) +
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+ 𝐸𝐿𝐽  
(5.17) 
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The value of ELJ is unknown as well as the exact value of the ratio of individual activity 

coefficients of the two iron cyanates. However, a theoretical redox potential at ionic 

strength zero 𝐸ℎ0 could be calculated that only includes measurable properties: 

𝐸ℎ0 = 𝐸0 (𝐹𝑒(𝐶𝑁)6
3−/𝐹𝑒(𝐶𝑁)6

4−) +
𝑅𝑇

𝐹
𝑙𝑛

𝑐𝐹𝑒(𝐶𝑁)6
3−

𝑐𝐹𝑒(𝐶𝑁)6
4−

 
(5.18) 

The difference between the observed and theoretical redox potential is expressed by the 

ΔEh, which is a combination of individual activity coefficients and the liquid junction po-

tential at the reference electrode: 

∆𝐸ℎ = 𝐸ℎ𝑜𝑏𝑠 − 𝐸ℎ0 =  
𝑅𝑇

𝐹
𝑙𝑛

𝛾𝐹𝑒(𝐶𝑁)6
3−

𝛾𝐹𝑒(𝐶𝑁)6
4−

+ 𝐸𝐿𝐽

= 𝐸ℎ𝑜𝑏𝑠 − 𝐸0 (𝐹𝑒(𝐶𝑁)6
3−/𝐹𝑒(𝐶𝑁)6

4−) −
𝑅𝑇

𝐹
𝑙𝑛

𝑐𝐹𝑒(𝐶𝑁)6
3−

𝑐𝐹𝑒(𝐶𝑁)6
4−

 

(5.19) 

Several approaches were explored to empirically describe the relationship between ΔEh 

and the medium concentration. In the end, a formulation was chosen that is analogous 

to the model that describes the impact of ionic strength on the apparent pH value. 

∆𝐸ℎ =
𝑅𝑇𝑙𝑛(10)

𝐹
(𝑎1𝑆𝐼𝑇(𝐼) + 𝑎2𝑄𝑀𝑋) 

(5.20) 

Eh relates to a potential whereas the two variables SIT(I) and Q are expressions of con-

centrations and activity coefficients. Therefore, the Nernst factor needs to be added to 

the formula. Parameters for NaCl and MgCl2 are based on the measurements in this 

work, those for KCl are calculated from the data in Hagemann et al. (2014) and Kolthoff 

and Tomiscek (1935) (Tab. 5.3). 

Tab. 5.3 Model parameters to calculate ΔEh in NaCl and MgCl2 solutions at 25, 

40 and 60°C 

T 
[°C] 

NaCl MgCl2 KCl 

a1 (SIT) a2 (Q) a1 (SIT) a2 (Q) a1 (SIT) a2 (Q) 

25°C -7.91 0.333 -10.04 1.11 -9.72 0.134 

40°C -8.28 0.293 -9.96 1.07   

60°C -7.70 0.297 -9.95 1.03   
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It is interesting to note that the factors a2 for ΔEh and ΔpH are quite similar. Such behav-

iour was expected since the liquid junction potential at the reference electrode in both 

cases depends essentially only on the concentration of the background salt. On the other 

hand, the ratio of activity coefficients of Fe(CN)6
4- and Fe(CN)6

3- seems to develop in the 

same way as the individual activity coefficient of H+, otherwise, the slopes of ΔEh and 

ΔpH would differ. This may be a coincidence, but it would be interesting to see how other 

ion pairs behave.  

The empirical model represents the relationship between ΔEh and the medium concen-

tration very well (Fig. 5.8ff.).  

 

Fig. 5.8 Relationship between ΔEh and the concentration of NaCl and MgCl2 at 

25°C 
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Fig. 5.9  Relationship between ΔEh and the concentration of NaCl and MgCl2 at 

40°C 

 

Fig. 5.10 Relationship between ΔEh and the concentration of NaCl and MgCl2 at 

60°C 

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5

Δ
Eh

 [
m

V
]

I 1/2

MgCl 40°C
MgCl 40°C calculated
NaCl 40°C
NaCl 40°C calculated

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5

Δ
Eh

[m
V

]

I 1/2

MgCl2 60°C
MgCl2 Calculated
NaCl 60°C
NaCl calculated



 

B-61 

 

Fig. 5.11 Relationship between ΔEh and the concentration of KCl at 25°C 

5.2.8 Application of the empirical model in ternary solutions 

In a ternary solution, the empirical model needs to be adapted so that the specific impact 

of two different salts can be reflected. 

∆𝐸ℎ =
𝑅𝑇𝑙𝑛(10)

𝐹
(𝑎1,𝑀𝑋

𝑐𝑀𝑋

𝑐𝑀𝑋 + 𝑐𝑁𝑋
𝑆𝐼𝑇(𝐼) + 𝑎2.𝑀𝑋𝑄𝑀𝑋 + 𝑎2.𝑁𝑋𝑄𝑁𝑋) 

(5.21) 

This formula is fully compatible with the formula for binary solutions presented above.  

Fig. 5.12 shows that the difference between experimental and calculated ΔEh is only 

very small at 25°C. The same can be observed at 40°C (Fig. 5.13). At 60°C, a difference 

of up to 10 mV is noted. As it stretches to solutions with almost pure MgCl2 it may be 

assumed that there is a systematic error caused by the composition of MgCl2. In some 

experiments with MgCl2 decomposition of hexacyanoferrates was observed.  

0

20

40

60

80

100

120

140

160

180

200

0 0,5 1 1,5 2 2,5

Δ
Eh

 [
m

V
]

I 1/2

Kolthoff and Tomsicek (1935)

Bischofer et al. (2016)

KCl 25°C calc



 

B-62 

 

Fig. 5.12 Apparent redox potential of equimolar Fe(CN)6
4-/ Fe(CN)6

3- in mixed 

NaCl/ MgCl2 solutions at 25°C 

 

Fig. 5.13 Apparent redox potential of equimolar Fe(CN)6
4-/ Fe(CN)6

3- in mixed 

NaCl/ MgCl2 solutions at 40°C 
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Fig. 5.14 Apparent redox potential of equimolar Fe(CN)6
4-/ Fe(CN)6

3- in mixed 

NaCl/ MgCl2 solutions at 60°C 

5.2.9 Expressing the redox state of a solution using the empirical model 

The empirical model describes well the deviation of Eh from a hypothetical zero ionic 

strength solution, but it contributes little to the understanding of the actual redox status. 

This may be achieved by a two-step approach.  

In the first step, the observed redox potential Eh is used as a basis to calculate the actual 

or virtual concentration ratio of hexacyanoferrates in solution. If ΔEh can be calculated 

Formula (5.19) may be rearranged into 

𝑙𝑜𝑔
𝑐𝐹𝑒(𝐶𝑁)6

3−

𝑐𝐹𝑒(𝐶𝑁)6
4−

=
𝐹

𝑅𝑇 ln 10
 (𝐸ℎ𝑜𝑏𝑠 − 𝐸0 (

𝐹𝑒(𝐶𝑁)6
3−

𝐹𝑒(𝐶𝑁)6
4−) − ∆𝐸ℎ) 

(5.22) 

The concentration ratio may also be calculated in cases where the hexacyanoferrates 

are not even present. It only serves as a concentration-based expression for the redox 

status. Still, this ratio has little applicability as it depends on the solution composition. But 

it can be linked to other redox species a scientist is more familiar with. An example is 

oxygen that may be included in a redox reaction with hexacyanoferrate as follows 

Fe(CN)6
4- + 1/4O2 +H+  Fe(CN)6

3- + ½ H2O (5.23) 
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The equilibrium constant for this reaction would be formulated as: 

𝐾1 =
𝑎𝐹𝑒(𝐶𝑁)6

3−𝑎𝐻2𝑂
0.5

𝑎𝐹𝑒(𝐶𝑁)6
4−𝑝𝑂2(𝑔)

0.25 𝑎𝐻+
 

(5.24) 

The partial pressure of oxygen (more precisely its fugacity whose numerical value is 

almost the same at or below 1 bar total pressure) can be calculated from the individual 

redox reaction of ferri-/ferrocyanide and oxygen: 

Fe(CN)6
4-  Fe(CN)6

3- + e- (5.25) 

2 H2O  O2 +4H+ + 4e- (5.26) 

The standard potential of the ferri-/ferrocyanide reaction is 0.355 V (Hanania et al. 1967) 

resulting in an equilibrium constant of log K = 6.00:  

log 𝐾2 = −
𝐹

𝑅𝑇 ln 10 
𝐸0 = 6.00  (5.27) 

It is combined with the equilibrium constant for reaction (5.26) (log K= -85.984, Hummel 

et al. 2002) so that the constant for reaction (5.23) amounts to: 

log K1= 27.50 

The partial pressure of gaseous O2 in equilibrium with a solution containing a known 

concentration of ferrocyanide and ferricyanide could then be calculated by: 

𝑝𝑂2(𝑔) =
𝑐𝐹𝑒(𝐶𝑁)6

3−
4 𝛾𝐹𝑒(𝐶𝑁)6

3−
4 𝑎𝐻2𝑂

2

𝑐𝐹𝑒(𝐶𝑁)6
4−

4 𝛾𝐹𝑒(𝐶𝑁)6
4−

4 𝑎𝐻+
4 𝐾1

4
 

(5.28) 

Finally, (5.28) may be logarithmized to 

𝑙𝑜𝑔 𝑝𝑂2(𝑔) = 4 𝑙𝑜𝑔
𝑐𝐹𝑒(𝐶𝑁)6

3−

𝑐𝐹𝑒(𝐶𝑁)6
4−

+ 4 𝑙𝑜𝑔
𝛾𝐹𝑒(𝐶𝑁)6

3−

𝛾𝐹𝑒(𝐶𝑁)6
4−

+ 2 𝑙𝑜𝑔 𝑎𝐻2𝑂 − 4 𝑙𝑜𝑔 𝛾𝐻+

− 4 𝑙𝑜𝑔 𝑐𝐻+ − 4 𝑙𝑜𝑔 𝐾1
4

 

(5.29) 

For an evaluation of this formula, it is necessary to have a thermodynamic model that 

describes the activity coefficients of hexacyanoferrate species in the specific solution 
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where the redox potential has been measured. Also, a model is needed to convert ap-

parent pH values into hydrogen concentrations. In this work, models have been devel-

oped that allow a calculation in NaCl, KCl, MgCl2 and mixed NaCl/MgCl2 solutions at 

25°C. At higher temperatures, only a model for NaCl solutions could be derived. Calcu-

lations in MgCl2 solutions are limited to about 3.0 mol/kg because it was not possible to 

extend the model to higher concentrations in the ternary system MgCl2-Mg2Fe(CN)6-H2O. 

Fig. 5.15 shows an example of pO2 values calculated from Eh following the procedure 

as described above. In Fig. 5.16 the same values are corrected for the experimental H+ 

concentrations and compared with pO2 values predicted by thermodynamic modelling of 

equimolar hexacyanoferrate(II) and hexacyanoferrate solutions in NaCl. Both data sets 

correspond very well. 

 

Fig. 5.15 Calculated pO2 for hexacyanoferrate mixtures in NaCl at 25°C 
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Fig. 5.16 Comparison of pcH corrected pO2 values calculated from measured Eh 

and predicted by thermodynamical modelling 
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6 Complex formation of Fe(II) with chloride and sulphate 

6.1 Background and objective 

In the near-field of a repository, strongly reducing conditions are to be expected in the 

long term due to the presence of metallic iron in containers, liners, rails and reinforcing 

steel. Iron released by corrosion will occur in solution and secondary phases will almost 

exclusively be formed with ferrous iron.  

In the case of saline near-field solutions, as they occur in the host rock formations of salt 

and North German Lower Cretaceous clays, a model is required that represents the spe-

cial conditions chemically and physically correctly. A model for iron(II) in saline solutions 

has already been developed for 25° (Hagemann et al. 2012). However, for simplicity's 

sake, it assumed that no complex formation with iron(II) occurs in solutions with a high 

chloride and sulphate content and that Fe2+ is always free. In fact, Fe(II) forms complexes 

with both chloride and sulphate as could be detected by spectroscopic measurements 

(UV-VIS, IR, XANES, X-ray absorption) (for example Vogel Koplitz et al. 1987, Heinrich 

and Seward 1990, Zhao and Pan 2001, Liu et al. 2007). The complex formation is prob-

ably one reason why the modelling of Fe(II)-containing salt systems was only partially 

successful (Moog and Hagemann 2004).  

There is now a consistent picture of the complexes that may form. According to widely 

agreed interpretations, the species FeCl+ (octahedral), FeCl2(aq) (octahedral) and 

FeCl42- (tetrahedral) occur in aqueous solutions (Zhao and Pan 2001, Liu et al. 2007, 

Testemale et al. 2009). The species FeCl3- was postulated (Vogel Koplitz et al. 1987), 

but cannot be reliably derived from spectroscopic data (Testemale et al. 2009). 

However, it is not clear at which chloride concentrations the various complexes occur. 

According to the XANES investigations by Liu et al. (2007), at 25°C the occurrence of 

FeCl2(aq) would be expected from approx. 2 mol/kg, with FeCl42- from 6 mol/kg. Zhao 

and Pan (2001) suspect FeCl2(aq) only from about 4 to 5 mol/kg, whereas the complex 

FeCl42- can only be detected at 60°C or higher. Testemale et al. (2009) were able to 

detect significant contributions of the tetrachloro complex only at 300°C. 

Studies that investigated the specific influence of important background salts such as 

NaCl, MgCl2 or KCl on complex formation were previously only available for NaCl/LiCl in 
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D2O. A Pitzer model was developed by Zhao and Pan 2001. They describe the complex 

formation in NaCl and LiCl solutions up to I= 16.38 m. It is noticeable, however, that for 

the interaction of Fe2+ with Cl- the parameter set of Pitzer (1991) was used, which is only 

valid up to 2 mol/kg FeCl2 and was also created under the assumption that no complex 

formation takes place. Since temperature coefficients were not available for the param-

eters of Fe2+/Cl-, the coefficients of Co2+/ Cl- were used without further testing. For the 

ion pair FeCl+/Cl- the value of Haung (1989) for CuCl+/Cl- was assumed. However, their 

model for the system NaCl-CuCl2-H2O suffers from strong correlations, because a total 

of 59 parameters were optimized simultaneously. Therefore, the model is highly ques-

tionable. 

Fe2+ also forms at least one complex with sulphate. In the same way, as for chloride, 

spectrophotometric data were intended to be used to quantify the complexation in 

Na2SO4 solutions. 

6.2 Approach 

It was planned to investigate the speciation of Fe2+ in chloride and sulphate solutions in 

three steps: 

1. UV-spectroscopic measurements of Fe(II) species in solutions of the salts NaCl, 

KCl, MgCl2, LiCl and Na2SO4 in the wavelength range 190 to 800 nm at 25 to 

80°C 

2. The solution spectra should then be deconvoluted into individual species spectra 

to determine the number of species present and their concentration.  

3. This should then serve as the basis for deriving an ion-specific thermodynamic 

model. 

The spectrophotometric investigations were performed with a two-beam UVVIS spec-

trometer (Shimadzu UV-2450). An iron-containing solution was measured against an 

iron-free solution of otherwise identical composition in the wavelength range 190 to 800 

nm.  

Due to the weak absorptivity of iron(II) species, the concentration of Fe(II) had to be in 

the range of 0.05 mol/kg. The iron(II) solutions were prepared by mixing a solution of 

iron(II) perchlorate with a stock solution of NaCl, LiCl, MgCl2 or Na2SO4. The perchlorate 
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was chosen to allow investigations of solutions with low chloride content. An addition of 

perchloric acid (final concentration in measuring solutions about 0.001 mol/kg) ensured 

slightly acidic conditions and suppression of hydroxo complexes. Due to the poor solu-

bility of KClO4, KCl solutions were prepared by using a FeCl2 stock solution.  

Some solutions with very high chloride concentrations (some batches with LiCl and 

MgCl2) showed considerably higher absorptions. In these cases, solutions with lower Fe 

content were prepared. 

All solutions were manufactured in a glovebox under exclusion of oxygen. In the refer-

ence solutions, Mg(ClO4)2 of the same concentration was used instead of Fe(ClO4)2. To 

avoid oxidation of the solutions outside the glovebox, all measuring solutions in the 

glovebox were filled into sealable cuvettes.  

All measurements were performed in temperature-controlled cell holders. Measurements 

at higher temperatures (40, 60, 80°C) were performed with pre-temperated cells to ac-

celerate the establishment of thermal equilibrium. 

6.3 Results of spectroscopic investigations 

6.3.1 Spectra in chloride media 

In the absence of chloride and at low chloride contents (up to 0.03 mol/kg) the spectra 

had a uniform shape and showed a shoulder at 240 nm (41700 cm-1) and a flank rising 

to the far UV (Fig. 6.1). 

At concentrations of 0.1 mol/kg and above, an increase in absorption could be observed 

in all wavelength ranges. It was small in the beginning but became increasingly clearer 

and lead to an increase in the absorption in the shoulder region by about 80%, whereby 

the shoulder shifted continuously to about 250 nm. The flank below 240 nm increased 

slightly more (approx. 120%) (Fig. 6.2).  

A further increase of the chloride concentration (only observable in LiCl) leads to the 

formation of a maximum at 250 nm, which shifted continuously and was located at 255 

nm (39200 cm-1) at the highest LiCl concentration (16.1 mol/kg). In all wavelength 

ranges, the absorption at the highest chloride concentration was about four times 
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stronger than at 6.1 mol/kg NaCl. The flank below 240 nm became increasingly strong 

so that the light beam was extinguished to a large extent. In that case, these parts of the 

solution spectrum consisted only of noise (Fig. 6.3 and Fig. 6.4). 

Whether the solution spectrum at 16.1 mol/kg LiCl was already a limit spectrum that 

cannot be further changed cannot be said. Fact was that the solution spectrum between 

14.4 and 16.1 mol/kg LiCl changed only slightly. 

The spectra also showed a weak profile in the range from 300 to 500 nm, which also got 

stronger at higher chloride concentrations. A comparison with spectra of solutions con-

taining Fe(III) showed that these are probably impurities of Fe(III) (Stefánsson et al. 

2019). In chloride-containing solutions, Fe(III) species have a molar absorption about ten 

times higher than Fe(II) species, especially when the complex FeCl4- is present. Rough 

estimates suggest that, despite extensive precautions, about 1% Fe(III) was present, so 

that the solution spectra were increased by about 10% in the range 200 to 300 nm. This 

had to be taken into account when evaluating the spectra. 

The spectra at higher temperatures show a similar development as at 25°C. In the ab-

sence of chloride, a shoulder is again found at about 240 nm. A change in the spectrum 

occurs even with the smallest addition of chloride (0.01 mol/kg). The complex formation, 

therefore, starts earlier. At the highest concentrations of NaCl, LiCl, and MgCl2 the spec-

tra showed a new characteristic. The shoulder at 255 nm further developed into a peak 

at 261.5 nm. At the same time, the flank below 240 nm increased very strongly (Fig. 6.5 

for 80°C). The disturbances by Fe(III) had an even stronger effect. The absorption by 

Fe(III) species now reaches about 20%.  
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Fig. 6.1 Solution spectra standardised to 1 mol/l Fe in solutions of NaCl (0 to 0.3 

mol/kg) 

 

Fig. 6.2  Solution spectra standardised to 1 mol/l Fe in solutions of NaCl (0 to 6.1 

mol/kg) at 25°C 
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Fig. 6.3 Solution spectra standardised to 1 mol/l Fe in solutions of NaCl and LiCl 

(0 to 16 mol/kg) at 25°C 

1  

Fig. 6.4 Solution spectra standardised to 1 mol/l Fe in solutions of NaCl (0 to 6.1 

mol/kg) and LiCl (0 to 16.1 mol/kg) 
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Fig. 6.5 Solution spectra standardised to 1 mol/l Fe in solutions of NaCl (0 to 6.1 

mol/kg) and LiCl (0 to 16.1 mol/kg) at 80°C 
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spectra into single species spectra. Using factor analysis, the programme Wotan 

(Hagemann 2012) predicted two or three distinct species as the optimum choice, but the 

model was not convincing. The proposed single species spectra were almost identical 

(Fig. 6.8). Therefore, spectrophotometry was only able to provide a qualitative indication 

of complex formation. The complex is obviously rather weak. If it occurred in significant 

amounts in mixed systems such as Na2SO4-FeSO4-H2O it would be visible in isopiestic 

measurements. Complex formation, even if weak would lead to a significant change of 

the total concentration of aqueous species. Such a process causes isoactivity lines to 

bend. No such measurements have been conducted for Fe(II) systems. However, some 

data exist for the comparable NiSO4 and CoSO4 systems (Hagemann et al. 2015). The 

isoactivity lines in mixed NiSO4-Na2SO4 and CoSO4-Na2SO4 solutions clearly show a 

curvature. It may be expected that the analogous Fe(II) system behave similarly. 

 

Fig. 6.6 Absorption of Fe(II) containing sulphate solutions at 25°C 
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Fig. 6.7 Absorption of Fe(II) containing sulphate solutions at 25°C: shoulder at 

240 nm 

 

 

Fig. 6.8 Proposed species spectra in a 2-species model for Fe(II) in sulphate so-
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ligand concentrations (here: chloride). Afterwards, the determination of the eigenvectors 

and eigenvalues for the matrix of the absorption spectra is carried out step by step, i.e. 

with an increasing number of considered measurements. This procedure allows a rough 

estimate of the concentration development of the existing species and the underlying 

single-species spectra. Smoothing and correction methods are used to find an optimal 

solution that minimizes the error square sum for the difference between measured and 

calculated absorptions. The number of distinguishable species in the system is estimated 

by statistical methods but ultimately determined by try-and-error. That number of species 

is chosen for which the error sum of squares is smallest after optimization. More details 

can be found in Hagemann (2012). 

Deconvolution of solution spectra is hampered by the dilemma of apparent limit spectra. 

In cases of strongly overlapping species spectra, the spectral separation tends to con-

sider the spectrum at the highest ligand concentrations as an invariant boundary spec-

trum with a maximum concentration of the last/highest complex. The algorithm cannot 

distinguish whether the last solution spectrum is a pure species spectrum or just a linear 

combination of two separate species spectra. 

6.4.2 Results of spectral deconvolution 

The spectral separation of the measurements at 25°C clearly led to three different spe-

cies. Two species were too few to explain all solution spectra. A three-species model 

could explain all spectra very well. Smaller deviations might have been caused by Fe(III) 

species. A four-species Modell did not improve the situation. Instead, the sum of the 

squares of errors became much larger an at least two calculated species spectra were 

very similar.  

Fig. 6.9 shows the calculated species spectra at 25°C. Spectrum 1 corresponds to Fe2+. 

Spectra 2 and 3 stand for two Fe(II)-chloro complexes. Their maxima are 251 (60 l mol-

1 cm-1) and 255 nm (76 l mol-1 cm-1). 

The measurements at 80°C could also be explained by three spectra. No additional spe-

cies appeared. The maximum of species spectrum 2 is at 252 nm (67 l mol-1 cm-1), the 

maximum of the third species spectrum at 264 nm (91 l mol-1 cm-1). While the height 

and position of the second species spectrum shifted only slightly, a clear change could 

be seen in the third spectrum, both in position (9 nm redshift) and height (+15 l mol-1 
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cm-1). This can be interpreted by assuming that the solutions spectrum at 25°C and 16.1 

mol/kg LiCl was not yet a boundary spectrum, but only a mixture of the spectra of the 

second and third species. The calculated species spectrum of the measurements at 80°C 

is probably closer to the spectrum of the second complex. However, it is by no means 

certain that the measurement at 16.1 mol/kg is already a boundary spectrum. It could 

also still be a mixture. This assumption is supported by a comparison of the calculated 

species spectra at 25, 40, 60, and 80°C. Whereas the spectrum of FeCl+ showed only a 

slight increase of absorptivity when the temperature was increased while the shape and 

position remained unchanged (Fig. 6.11), the calculated peak maximum in the spectrum 

of FeCl2(aq) shifts from about 245 to 265 nm between 25 and 80°C (Fig. 6.12). The 

derived species distributions should therefore be treated carefully, at least concerning 

the third species. 

 

Fig. 6.9 Species spectra of Fe(II) chloro complexes at 25°C 
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Fig. 6.10 Species spectra at 80°C 

 

Fig. 6.11 Spectrum of the FeCl+ complex at 25-80°C 
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Fig. 6.12 Spectrum of the FeCl2(aq) complex at 25-80°C 

The measured spectra can be reconstructed very well with the derived single species 

spectra (example: Fig. 6.13). 

 

Fig. 6.13 Measured and reconstructed spectrum of the solution NaCl-20 (6.1 

mol/kg NaCl) at 25°C 
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about 13 mol/kg the third complex dominates. While the first appearance of the two 

chloro complexes is characterized by a slow concentration increase, the disappearance 

of the free Fe2+ and the first complex is quite abrupt. Normally, a slow run-out would be 

expected. Instead, the calculated concentration quickly drops to zero. Probably, this does 

not correspond with reality. Rather, it can be assumed that the calculated single spectra 

of the following species (2 and 3) contain spectral components of the respective previous 

species. Because of the strong overlapping of the three species a mathematical separa-

tion is difficult (see discussion above). 

At 80°C, the formation of the first complex starts earlier. Its maximum is observed at 

about 8 mol/kg. The second complex is already detectible around 3 mol/kg. Its calculated 

relative concentration reaches its maximum exactly at the highest LiCl concentration. 

This is most probably a mathematical artefact and the last measured spectrum is still a 

mixture of two species.  

 

Fig. 6.14 Distribution of Fe(II) species in NaCl, KCl, LiCl, and MgCl2 solutions at 

25°C. 
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Fig. 6.15 Distribution of Fe(II) species in NaCl, KCl, LiCl, and MgCl2 solutions at 

80°C. 

 

Fig. 6.16 Speciation of Fe(II) between 0 and 8 mol/kg Cl in NaCl and LiCl solu-

tions at 25, 40, 60 and 80°C. 
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concentrations up to 2 mol/kg (Fig. 6.17). At higher chloride concentrations the water 

activities of FeCl2 decreases slower than those of CaCl2. This is consistent with the ob-

servation that the complex formation becomes more important for Fe(II) than with Ca 

with the result that the number of dissolved ions is decreasing slower with Ca. For the 

ion pairs Ca2+/ Cl- and consequently Fe2+/ Cl- the THEREDA model is applied. This as-

sumption cannot be proven now, but at least the model is plausible to a certain degree. 

For FeCl+, in the absence of reliable models, it is assumed that its activity coefficients 

can be described as the similarly heavy cation Rb+. For this purpose, a preliminary model 

is used2. On this basis, the activity coefficients for Fe2+, FeCl+ and Cl- were calculated for 

all solutions except LiCl, for which the necessary ternary interaction coefficients are not 

available. In addition, since it is questionable whether the spectral separation at high 

chloride concentrations yields correct species distributions, this step is not necessary. If 

the activity ratio log aFeCl+/ aFe2+ is plotted against log aCl, a slope of -1 is obtained as 

expected.  

The second complex was identified similarly but only at a later stage. As there were at 

25°C only two measurements In NaCl, KCl and MgCl2 solutions where the second com-

plex occurred, a preliminary evaluation was performed for the solutions at 80°C. Again, 

Pitzer coefficients for Fe2+/ Cl- were adopted from Ca2+/ Cl-. A Pitzer model was estab-

lished for FeCl+. The hypothesis was tested that FeCl2(aq) was the second complex. It 

was assumed that the activity coefficients of FeCl2(aq) were equal to unity. For the eval-

uation, only those solutions were selected that contained at least 5% of the second com-

plex. This applied to nine MgCl2 solutions with a chloride concentration between 6.8 and 

9.1 mol/kg. The calculated equilibrium constant for the reaction  

FeCl+ + Cl- → FeCl2(aq) 

was constant for all considered solutions, thus confirming the hypothesis. This observa-

tion is consistent with the results of Testemale et al. (2009) who have shown by X-ray 

absorption spectroscopy (XANES) that a species with tetragonal symmetry like FeCl42- 

or FeCl3- can be observed only at much higher temperatures (>300°C).  

 

2 This model is being developed as part of the THEREDA project by T. Scharge (GRS). As it is used only for 

a first approximation of the complex formation constant but not further on, it is not documented here. 



 

B-83 

In contrast to that, Liu et al. (2007) concluded from their XANES spectra that the complex 

FeCl42- starts to form at about 6 mol/kg even at 25°C. They relied on the complex for-

mation constants for FeCl+ and FeCl2(aq) from Zhao and Pan (2001). Based on UV 

spectroscopic measurements, they assigned the tetrahedral complex FeCl42- to the 

(moving) Peak around 265 nm and concluded that this complex occurs in significant 

concentrations already at 60°C. According to Vogel Koplitz et al. (1987) FeCl42- is detect-

able already at 25°C and 6 mol/kg LiCl in D2O.  

Other spectroscopic investigations of Fe(II) chloro complexation worked with considera-

bly lower chloride concentrations and did not find complexes beyond FeCl2(aq) ( Susak 

and Crerar 1985, Heinrich and Seward 1990, Palmer and Hyde 1993) 

In our measurements, even at 80°C and 16.1 mol/kg LiCl there is no indication of a third 

complex species beyond FeCl2(aq).  

 

Fig. 6.17 Water activity of FeCl2 and CaCl2 at 25°C 
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was estimated at 25°C. For the aqueous solutions of NaCl, KCl and MgCl2, it amounted 

to approximately log β1=-0.9. As all measuring solutions contained perchlorate it was 

necessary to include model parameters for the interaction of perchlorate with the major 

ions and iron species. These were taken from May et al. (2011), Hagemann et al. (2015) 

and other sources (Tab. 6.1). For the ternary system MgCl2-Mg(ClO4)2-H2O neither inter-

action parameters nor experimental data were available. It was assumed that the system 

obeys the Zdanovskii rule (straight isoactivity lines) so that ternary interaction parame-

ters could be calculated from a plot of synthetic data between two solutions of equal 

water activity (4 m MgCl2 and 4.71 m Mg(ClO4)2).  

Neither interaction coefficients nor thermodynamic data for Fe(ClO4)2 solutions were 

available. In lack of other options, it was assumed the interaction coefficients for 

Ca(ClO4)2 apply to Fe(ClO4)2 as well. The situation was even more complicated for the 

interaction between FeCl+ and ClO4
-
. No suitable analogue was found and no experi-

mental data that could be applied to our situation. Instead, the parameters β(0) and β(1) 

were estimated using the method of Simoes et al. (2016). The method works exclusively 

based on charge and ionic radius and provides reasonable estimation for Pitzer coeffi-

cients. In the first step, the ionic radius of FeCl+ had to be estimated. Using the method 

in Simoes et al. (2017) we calculated 1.71 Å. This resulted in the interaction coefficients 

shown in Tab. 6.1. Although this guess may be rough the effect of low perchlorate con-

centrations (max. 0.1 mol/kg) on the activity coefficient of FeCl+ is rather low as other 

ions are present in much greater concentration when the complex occurs. 

Using the program Wotan (Hagemann et al. 2015), Pitzer interaction coefficients for 

FeCl+ in NaCl, KCl and MgCl2 solutions were calculated (Tab. 6.2). It was not possible 

to determine the parameter Cφ
FeCl+ Cl- next to ΨFeCl+ Mn+ Cl- or θFeCl+ Mn+ in combination with 

to β(0) and β(1), because these parameters correlate in solutions with Fe(II) as trace ele-

ment. In the same way, it was not possible to optimize the interaction parameters for 

Fe2+, Cl- although this would be highly desirable. Making the activity coefficients for this 

ion pair variable directly causes new mathematical correlations that would make the op-

timization very unstable. 

In the following step, the complexing constant β1 was varied and the parameters opti-

mized again until the error sum of squares became minimal. This occurred at 

log β1 = -1.33. However, the final binary interaction coefficient β(1) has a negative value 

(about -1.7) and the calculated activity coefficient of FeCl+ was often lower than that of 

Fe2+. Principally, it is possible to select a different combination of complex formation 
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constant and interaction coefficients that still performs well in predicting the observed 

experimental properties. But there is no way to select the ‘right’ combination without ar-

bitrary assumptions. 

The calculated complex formation constant at 25°C differs significantly from previously 

published constants. A selection of published values is shown in Tab. 6.3. For a more 

comprehensive overview, one might refer to the NEA review on iron (Lemire et al. 2013). 

Interestingly, the authors of the NEA review were confronted with the same challenge. 

Using the isopiestic measurements of FeCl2 solutions by Moog et al. (2004) they derived 

a complex formation constant of log β1 = -2.05. We strongly object the idea of deriving 

speciation and species activity coefficients from a single colligative solution property 

(here, water activity, the same problem occurs with potentiometric measurements at high 

ionic strengths) because fatal correlation between the derived complex formation con-

stants and ion interaction coefficients is inevitable. Without spectroscopic data on speci-

ation, it is not possible to establish a sound chemical model that is the necessary basis 

for deriving a thermodynamic model that described the activity of the occurring species.  

But the outlined procedure shows that the formation of weak complexes at high ionic 

strengths can be described by different sets of complex formation constants in combina-

tion with a certain ion activity model. Therefore, our value of log β1 = -1.33 is not out of 

range, but just one flavour in a field of possibilities.  

Only in two solutions with high MgCl2 concentration FeCl2(aq) was detected. The com-

plex occurred in a region where the spectra deconvolution is difficult because of spectral 

pollution of single species spectra. Our evaluation is only preliminary and leads to a for-

mation constant of about log K2 = -3.9 (log β2 = -5.2) if the activity coefficients of 

FeCl2(aq) are assumed to be unity. The value needs to be confirmed by additional meas-

urements and evaluation of data at 40 to 80°C. 
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Tab. 6.1 Pitzer interaction coefficients considered as given (25°C) 

Ion pair/ triple β(0) β(1) Cφ θ Ψ Source 

Na+ ClO4
- 0.05704 0.2801 

-

0.000719

2   

1 

Mg2+ ClO4
- 0.4961 2.009 0.003387   4 

Fe(ClO4)2 0.4638 1.7616 

-

0.000705

98   

2 

Cl- ClO4
-    0.04731  1 

Na+ Cl- ClO4
-     

-

0.007384 

1 

Mg2+ Cl- ClO4
-     -0.01285 5 

Fe2+ Cl- 0.3065 1.708 0.002224   3 

Na+ Fe2+ Cl-    0.05813 

-

0.001095 

3 

K+ Fe2+ Cl-    0.1156 -0.04319 3 

Mg2+ Fe2+ Cl-    -0.01803 -0.01178 3 

Sources: 1:Hagemann et al. (2015), 2: This work, based on coefficients for Ca(ClO4) in May et al. 

(2011), 3: This work, parameters for Ca2+ in the THEREDA database, 4: May et al. (2011), 5: This work, 

based on artificial date (Zdanovskii plot),  

Tab. 6.2 Determined Pitzer interaction coefficients (25°C) 

Parameter value α 

β(0) (FeCl+, Cl-) 0.239429  

β(1) (FeCl+, Cl-) -1.72777 α(1) (FeCl+, Cl-)=2 

Ψ (FeCl+, Na+, Cl-) -0.00287987  

Ψ (FeCl+, K+, Cl-) -0.0430964  

Ψ (FeCl+, Mg2+, Cl-) -0.0313789  
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Tab. 6.3 Complex formation constant β1 for the reaction Fe2+ +Cl- → FeCl+ at 

25°C 

log β1 Analytical method Activity model Source 

-0.125 UV Extended Debye-Hückel Palmer and Hyde (1993) 

-0.16 UV HKF 

Heinrich and Seward 

(1990) 

-0.425 UV Pitzer Zhao and Pan (2001) 

-0.506 NIR Pitzer Zhao and Pan (2001) 

-0.366 UV, NIR Pitzer, average Zhao and Pan (2001) 

-0.5  HKF 

Testemale et al. (2009) 

from Zhao and Pan 

(2001) 

-1.33 UV Pitzer This work 

The ion interaction parameters allow a reliable calculation of the speciation in the con-

sidered concentration range. Only at the highest MgCl2 concentrations, there is a small 

deviation (Fig. 6.18, Fig. 6.19). At discussed above, the species spectra of FeCl+, and 

possibly FeCl2(aq) probably include spectral features of Fe2+ and FeCl+, respectively. 

Using the derived thermodynamic speciation model, it should be possible to adjust the 

species concentration matrix in the evolving factor analysis process to remove or at least 

to minimize the spectral pollution of single species spectra. This would be an iterative 

process that needs to be implemented in the program WOTAN. 

 

Fig. 6.18 Speciation of Fe(II) in NaCl solutions at 25°C 
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Fig. 6.19 Speciation of Fe(II) in MgCl2 solutions at 25°C 

The next step was to test the parameter set with binary aqueous solutions of FeCl2. In 

this system, specific interactions between different iron species (Fe2+ and FeCl+) may 

occur. No information is available on the speciation in pure FeCl2 solutions so that in the 

first approach no such interactions could be considered. Water activities were calculated 

up to a total iron concentration of 5.1 mol/kg. They were recalculated into apparent os-

motic coefficients3 to allow for a simple comparison with literature values. Apparent os 

Up to a concentration of 4 mol/kg calculated and experimental values correspond sur-

prisingly well. At higher iron concentrations, a gap occurs. But even the at highest con-

centration the difference is only 0.08 in φ (Fig. 6.20). According to the calculation, in 

nearly saturated FeCl2 solutions almost only FeCl+ occurs so that specific interactions 

between FeCl+ and Fe2+ cannot be the cause of the deviations. Rather, the interaction 

coefficients between FeCl+ and Cl+ need to be adjusted. Further work will be necessary 

to determine the speciation of iron(II) in binary solutions, but for the time being the model 

is sufficiently satisfactory.  

Based on the current model and a saturation concentration of 5.11 mol/kg (Moog and 

Hagemann 2004) a solubility constant of log K = 2.91 was determined for FeCl2·4H2O. 

 

3 Apparent osmotic coefficients are calculated from water activities by assuming full dissociation of FeCl2.The 

real osmotic coefficients would consider the actual speciation that is a-prior unknown for vapor pressure 

measurements.  
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Fig. 6.20 Calculated and literature values for the apparent osmotic coefficient of 

FeCl2 solutions at 25°C. 

In the next step the phase equilibria in saturated solution systems FeCl2-NaCl-H2O and 

FeCl2-KCl-H2O were evaluated. For this purpose, Geochemist's Workbench was used. 

Although no additional parameters were determined and Fe(II) is no longer only a trace 

component in these systems, experiment and modelling are in a good agreement up to 

highest concentrations. In the system FeCl2-NaCl-H2O experimental and calculated sol-

ubilities agree perfectly (Fig. 6.21). In the system FeCl2-KCl-H2O, the agreement was 

very good up to 2 mol/kg FeCl2. At higher FeCl2 concentrations the calculated values 

were slightly lower (Fig. 6.22). This applied to the sylvite as well as to the FeCl2·4H2O 

branch of the solubility system. Consequently, the calculated invariant point KCl(cr)/ 

FeCl2·4H2O(cr)/ saturated solution lies in some distance to the experimental values. On 

the other hand, Moog and Hagemann (2004) could not calculate the invariant point at all 

because the predicted branches of sylvite and FeCl2·4H2O did not cross. In this regard, 

the new dataset elaborated in this study is more robust.  

The unusual value for β(1) (FeCl+, Cl-) shows that some further work is necessary to pro-

duce a model that is in line with other observations in chloride systems. Due to the weak 

spectral absorptivity of Fe(II) species, it is possible to investigate concentrated FeCl2 

solutions as well. Such measurements would allow to include water activity and solubility 

measurements in the evaluation. This would also open an independent way to estimate 

the ion interaction coefficients of free Fe2+.  
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Because of these considerations, we decided not to further evaluate the measurements 

at 40, 60, 80°C. 

 

Fig. 6.21 Phase equilibria in the system FeCl2-NaCl-H2O at 25°C 

 

Fig. 6.22 Phase equilibria in the system FeCl2-KCl-H2O at 25°C 
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7 Summary and conclusions 

The redox state in the near-field of a repository has a significant impact on the solubility 

of radionuclides. It is usually expressed as the redox potential, which is determined by 

potentiometric measurement with a cell consisting of a platinum electrode and a silver, 

silver chloride reference electrode. However, in saline solutions, these measurements 

lead to systematic deviations that cannot be quantified by thermodynamic means. Based 

on previous work, a two-step computational method was developed which allows to con-

vert the primary potentiometric measurement into a concentration ratio of two redox-

sensitive species and then into an alternative measure of the redox status. 

The method was derived from systematic measurements of the redox potential in mixed 

solutions of hexacyanoferrate (II) and hexacyanoferrate (III) in solutions of the salts NaCl 

and MgCl2. This allowed an empirical relationship to be established between the redox 

potential, the salt concentration (NaCl or MgCl2) and the known mixing ratio of the hex-

acyanoferrate. This relationship can also be applied to solutions that do not contain hex-

acyanoferrate but other redox-sensitive substances. The calculated mixing ratio of the 

hexacyanoferrate is already an alternative measure for the redox state. However, the 

ratio is rather unusual and may be converted into a more common measure. The nega-

tive logarithm of the partial pressure of oxygen pO2, for example, is suitable for this pur-

pose.  

The conversion from the mixing ratio to the oxygen partial pressure requires, in addition 

to the measurable hydrogen concentration (pcH), a model to describe the activity coeffi-

cients of hexacyanoferrate ions in NaCl and MgCl2 solutions. For this purpose, literature 

data were collected and evaluated, but for all relevant binary and ternary systems, addi-

tional data were necessary. For these systems, notably Na4Fe(CN)4-H2O, Na3Fe(CN)6-

H2O, Mg2Fe(CN)6-H2O, Mg3[Fe(CN)6]2-H2O, Na4Fe(CN)4-NaCl-H2O, Na3Fe(CN)6-NaCl-

H2O, Mg2Fe(CN)6-MgCl2-H2O, Mg3[Fe(CN)6]2-MgCl2-H2O isopiestic measurements were 

performed to obtain vapour pressure data at 25, 40 and 60°C. Some solubility measure-

ments were performed at 25, 40 and 60°C. The measurements, in combination with lit-

erature data, served as a basis to derive a Pitzer model for binary and ternary systems. 

For systems with sodium hexacyanoferrates, this model can reliably describe the activity 

coefficients. For magnesium-containing systems, this is only partially possible. Appar-

ently, a strong complex formation between Mg2+ and hexacyanoferrates had a significant 

effect.  
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This effect was particularly strong between Mg2+ and Fe(CN)6
4-. As a consequence, the 

binary system Mg2Fe(CN)6-H2O was difficult to describe and the ternary system 

Mg2Fe(CN)6-MgCl2-H2O could be represented by the model only in parts only to a limited 

extent. Here, either further measurements are necessary to quantitatively describe the 

complex formation or investigations with another redox pair in which the difficulties men-

tioned do not occur. 

Under strongly reducing conditions, such as those that occur during corrosion of steel in 

the final layer, dissolved iron practically only occurs in the oxidation state +II. From earlier 

work, it was known that concentrated chloride solutions lead to complex formation be-

tween Fe2+ and Cl-. This was probably one of the reasons why the modelling of solubility 

systems such as KCl-FeCl2-H2O was not satisfactory so far. A model for the quantitative 

description of the complex formation of Fe2+ with chloride in solutions of NaCl, KCl and 

MgCl2 was missing until now. UV-spectrophotometric measurements were performed to 

investigate the complex formation in these solutions as well as in LiCl solutions at 25 to 

80°C. The spectra obtained were deconvoluted into single-species spectra by a factor 

analysis method. At the same time, the concentrations of individual species were deter-

mined. It was found that at 25°C and a chloride concentration of about 1 mol/kg the first 

complex became significant. The composition FeCl+ could be assigned to this complex. 

A second complex could be detected at chloride concentrations higher than 8 mol/kg. It 

was identified to be FeCl2(aq). Further complexes could not be detected up to a chloride 

concentration of 16 mol/kg (in LiCl solutions) even at 80°C. 

For the complex FeCl+, a formation constant and Pitzer coefficients for the interaction 

with the ions Cl-, Na+, K+ and Mg2+ were derived at 25°C. With their help, it was possible 

to describe the observed speciation very well for most of the chloride concentration 

range. Small deviations at the highest chloride concentrations were an indication that the 

calculated single species spectra for FeCl+ (and possibly for FeCl2(aq) as well) probably 

contained spectral features of the preceding species Fe2+ and FeCl+, respectively, as 

well. Some adjustments for factor analysis process are proposed to eliminate or at least 

to reduce the spectral ‘pollution’ of single species spectra. 

The model was then applied to describe the osmotic coefficients of pure FeCl2 solutions 

(up to 5 mol/kg) and solubilities in the systems NaCl-FeCl2-H2O and KCl-FeCl2-H2O. Alt-

hough the iron concentrations occurring in these systems are much higher than in the 

photometric measurements and interactions between different iron species become rel-

evant, the agreement between calculated and observed solubilities is surprisingly good. 
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Although the performance of the model was satisfactory, the unusual value of one ion 

interaction coefficient for FeCl+ and the deviation of the calculated complex formation 

constant from literature values showed that the model should be treated with some care. 

Additional scientific efforts are needed to improve the spectra deconvolution procedure 

and to reveal the Fe(II) speciation in solutions with higher iron concentrations. This would 

open a way for an independent estimation of ion interaction coefficients for Fe2+, FeCl+ 

and possibly FeCl2(aq) that cannot be determined from solutions where Fe(II) is only a 

trace component. 

Similar measurements were conducted for Fe(II) in sulphate solutions but even in solu-

tions of highest sulphate concentrations, the spectra changed very little so that it was not 

possible to quantify the complexation. 
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9 Annex 

9.1 Isopiestic measurements 

Tab. 9.1 Water activities of Na4Fe(CN)6 solutions 

T [°C] Vessel/  
Weighing 

Na4Fe(CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

aW φ 

25 30 / 4 0.100 0.167 0.99444 0.6213 

25 29 / 3 0.160 0.261 0.99137 0.6002 

25 20 / 2 0.215 0.342 0.98871 0.5866 

25 19 / 1 0.307 0.477 0.98430 0.5730 

25 18 / 2 0.419 0.639 0.97891 0.5648 

25 16 / 1 0.460 0.699 0.97693 0.5634 

25 15 / 1 0.527 0.799 0.97359 0.5637 

25 14 / 3 0.586 0.889 0.97057 0.5660 

40 30 / 6 0.100 0.173 0.99425 0.6403 

40 29 / 4 0.158 0.265 0.99125 0.6172 

40 20 / 3 0.213 0.346 0.98859 0.5974 

40 19 / 3 0.309 0.492 0.98377 0.5886 

40 18 / 3 0.415 0.651 0.97845 0.5835 

40 16 / 2 0.459 0.719 0.97619 0.5828 

40 18 / 4 0.474 0.740 0.97548 0.5810 

40 15 / 2 0.522 0.816 0.97291 0.5846 

40 14 / 2 0.574 0.898 0.97013 0.5867 

60 30 / 7 0.108 0.186 0.99383 0.6349 

60 29 / 7 0.170 0.286 0.99056 0.6210 

60 20 / 4 0.218 0.359 0.98816 0.6063 

60 19 / 5 0.321 0.516 0.98299 0.5931 

60 18 / 5 0.466 0.738 0.97553 0.5906 

60 16 / 3 0.475 0.758 0.97485 0.5946 

60 15 / 3 0.536 0.857 0.97148 0.5991 
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Tab. 9.2 Water activities of Na3Fe(CN)6 solutions -  I 

T [°C] Vessel/  
Weighing 

Na3Fe(CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

CaCl2 
[mol/kg] 

aW φ 

25 1 / 1 2.317 5.194  0.79792 1.3520 

25 2 / 1 2.162 4.767  0.81736 1.2946 

25 3 / 1 1.894 4.042  0.84938 1.1961 

25 4 / 1 1.724 3.591  0.86862 1.1340 

25 5 / 1 1.485 2.975  0.89384 1.0490 

25 6 / 1 1.281 2.475  0.91347 0.9806 

25 11 / 1 0.734 1.279   0.95719 0.8278 

25 13 / 1 0.558 0.943   0.96872 0.7901 

25 15 / 1 0.480 0.801   0.97352 0.7765 

25 17 / 1 0.422 0.699   0.97693 0.7681 

25 19 / 1 0.293 0.478   0.98423 0.7518 

25 20 / 2 0.211 0.344   0.98866 0.7482 

25 21 / 1 2.624  2.937 0.75780 1.4665 

25 22 / 2 2.814  3.138 0.73320 1.5302 

25 23 / 1 3.133  3.463 0.69254 1.6275 

25 24 / 2 2.942  3.207 0.72462 1.5194 

25 25 / 2 1.046 1.895   0.93522 0.8882 

25 29 / 3 0.163 0.261   0.99137 0.7398 

25 30 / 4 0.103 0.167   0.99444 0.7481 
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Tab. 9.3 Water activities of Na3Fe(CN)6 solutions -  II 

T [°C] Vessel/  
Weighing 

Na3Fe(CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

CaCl2 
[mol/kg] 

aW φ 

40 1 / 3 2.301 5.130   0.80019 1.3441 

40 2 / 4 2.184 4.816  0.81434 1.3051 

40 3 / 4 1.856 3.936  0.85294 1.1891 

40 4 / 4 1.728 3.603  0.86711 1.1452 

40 5 / 2 1.482 2.983  0.89263 1.0635 

40 6 / 2 1.288 2.511  0.91130 1.0005 

40 11 / 2 0.732 1.290   0.95654 0.8426 

40 13 / 2 0.562 0.963   0.96790 0.8049 

40 15 / 2 0.484 0.818   0.97285 0.7899 

40 17 / 3 0.416 0.698   0.97689 0.7803 

40 17 / 4 0.436 0.727   0.97592 0.7759 

40 19 / 3 0.299 0.494   0.98371 0.7615 

40 20 / 3 0.213 0.347   0.98854 0.7524 

40 21 / 3 2.316  2.629 0.79791 1.3527 

40 22 / 3 2.496  2.822 0.77631 1.4080 

40 23 / 3 2.755  3.099 0.74437 1.4871 

40 24 / 3 2.946  3.245 0.72705 1.5017 

40 25 / 3 1.054 1.934   0.93327 0.9093 

40 29 / 4 0.164 0.265   0.99125 0.7448 

40 30 / 6 0.108 0.173   0.99425 0.7443 
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Tab. 9.4 Water activities of Na3Fe(CN)6 solutions -  III 

T [°C] Vessel/  
Weighing 

Na3Fe(CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

CaCl2 
[mol/kg] 

aW φ 

60 1 / 5 2.357 5.221   0.79695 1.3366 

60 2 / 5 2.334 5.193  0.79819 1.3401 

60 3 / 5 1.979 4.242  0.83980 1.2242 

60 4 / 5 1.807 3.792  0.85897 1.1675 

60 5 / 3 1.558 3.121  0.88672 1.0706 

60 6 / 3 1.406 2.785  0.90022 1.0374 

60 11 / 3 0.748 1.314   0.95559 0.8425 

60 13 / 3 0.575 0.985   0.96710 0.8077 

60 15 / 3 0.503 0.859   0.97141 0.8001 

60 17 / 5 0.434 0.726   0.97595 0.7788 

60 19 / 5 0.321 0.518   0.98293 0.7435 

60 20 / 4 0.227 0.361   0.98812 0.7302 

60 21 / 4 2.069  2.385 0.82916 1.2568 

60 22 / 4 2.405  2.759 0.79026 1.3581 

60 24 / 4 2.871  3.150 0.74695 1.4104 

60 25 / 4 1.130 2.092   0.92712 0.9290 

60 25 / 5 1.200 2.231   0.92182 0.9411 

60 29 / 7 0.178 0.286   0.99058 0.7396 

60 30 / 7 0.115 0.186   0.99385 0.7442 
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Tab. 9.5 Water activities of K4Fe(CN)6 solutions - I 

T [°C] Vessel/  
Weighing 

K4Fe(CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

aW φ 

25 12 / 2 0.771 1.013 0.96635 0.4928 

25 13 / 1 0.716 0.943 0.96872 0.4925 

25 14 / 3 0.672 0.891 0.97050 0.4946 

25 15 / 1 0.602 0.801 0.97352 0.4948 

25 16 / 1 0.520 0.701 0.97688 0.4991 

25 17 / 1 0.518 0.699 0.97693 0.5004 

25 18 / 2 0.473 0.642 0.97883 0.5025 

25 19 / 1 0.342 0.478 0.98423 0.5162 

25 20 / 2 0.236 0.344 0.98866 0.5355 

25 29 / 3 0.172 0.261 0.99137 0.5595 

25 30 / 4 0.104 0.167 0.99444 0.5961 

40 12 / 3 0.754 1.030 0.96559 0.5153 

40 13 / 2 0.703 0.963 0.96790 0.5150 

40 14 / 2 0.655 0.900 0.97005 0.5152 

40 15 / 2 0.593 0.818 0.97285 0.5154 

40 16 / 2 0.518 0.720 0.97614 0.5173 

40 17 / 3 0.500 0.698 0.97689 0.5187 

40 17 / 4 0.520 0.727 0.97592 0.5203 

40 18 / 3 0.464 0.654 0.97836 0.5238 

40 18 / 4 0.534 0.743 0.97538 0.5181 

40 19 / 3 0.343 0.494 0.98371 0.5319 

40 20 / 3 0.234 0.347 0.98854 0.5472 

40 29 / 4 0.172 0.265 0.99125 0.5676 

40 30 / 6 0.107 0.173 0.99425 0.5976 
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Tab. 9.6 Water activities of K4Fe(CN)6 solutions - II 

T [°C] Vessel/  
Weighing 

K4Fe(CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

aW φ 

60 12 / 4 0.759 1.076 0.96394 0.5370 

60 13 / 3 0.698 0.985 0.96710 0.5321 

60 15 / 3 0.606 0.859 0.97141 0.5316 

60 16 / 3 0.533 0.760 0.97479 0.5316 

60 17 / 5 0.504 0.726 0.97595 0.5361 

60 18 / 5 0.510 0.741 0.97543 0.5417 

60 19 / 5 0.349 0.518 0.98293 0.5480 

60 20 / 4 0.235 0.361 0.98812 0.5645 

60 29 / 7 0.181 0.286 0.99058 0.5804 

60 30 / 7 0.111 0.186 0.99385 0.6150 
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Tab. 9.7 Water activities of K3Fe(CN)6 solutions - I 

T [°C] Vessel/  
Weighing 

K3Fe(CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

aW φ 

25 7 / 1 1.518 2.316 0.91955 0.7667 

25 8 / 1 1.364 2.062 0.92909 0.7482 

25 9 / 1 1.128 1.680 0.94304 0.7217 

25 10 / 1 1.012 1.497 0.94954 0.7102 

25 11 / 1 0.871 1.279 0.95719 0.6973 

25 12 / 2 0.693 1.013 0.96635 0.6850 

25 14 / 3 0.611 0.891 0.97050 0.6807 

25 16 / 1 0.479 0.701 0.97688 0.6773 

25 18 / 2 0.438 0.642 0.97883 0.6783 

25 20 / 2 0.230 0.344 0.98866 0.6881 

25 29 / 3 0.172 0.261 0.99137 0.6993 

25 30 / 4 0.108 0.167 0.99444 0.7178 

40 7 / 2 1.496 2.344 0.91777 0.7960 

40 8 / 2 1.307 2.023 0.92993 0.7713 

40 9 / 2 1.079 1.650 0.94368 0.7457 

40 10 / 2 0.977 1.481 0.94977 0.7318 

40 11 / 2 0.853 1.290 0.95654 0.7227 

40 12 / 3 0.687 1.030 0.96559 0.7075 

40 14 / 2 0.601 0.900 0.97005 0.7016 

40 16 / 2 0.482 0.720 0.97614 0.6949 

40 18 / 3 0.436 0.654 0.97836 0.6955 

40 18 / 4 0.502 0.743 0.97538 0.6891 

40 20 / 3 0.229 0.347 0.98854 0.6990 

40 29 / 4 0.172 0.265 0.99125 0.7073 

40 30 / 6 0.111 0.173 0.99425 0.7237 
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Tab. 9.8 Water activities of K3Fe(CN)6 solutions - II 

T [°C] Vessel/  
Weighing 

K3Fe(CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

aW φ 

60 7 / 3 1.499 2.392 0.91566 0.8155 

60 8 / 3 1.321 2.084 0.92740 0.7920 

60 9 / 3 1.042 1.628 0.94432 0.7630 

60 10 / 3 0.977 1.510 0.94859 0.7500 

60 11 / 3 0.887 1.314 0.95559 0.7109 

60 12 / 4 0.715 1.076 0.96394 0.7128 

60 18 / 5 0.494 0.741 0.97543 0.6994 

60 20 / 4 0.239 0.361 0.98812 0.6928 

60 29 / 7 0.194 0.286 0.99058 0.6775 

60 30 / 7 0.123 0.186 0.99385 0.6980 

 

  



 

B-123 

Tab. 9.9 Water activities of Mg2Fe(CN)6 solutions - I 

T [°C] Vessel/  
Weighing 

Mg2Fe(CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

aW φ 

25 9 / 1 1.152 1.680 0.94304 0.9416 

25 10 / 1 1.085 1.497 0.94954 0.8829 

25 11 / 1 0.997 1.279 0.95719 0.8118 

25 12 / 2 0.878 1.013 0.96635 0.7214 

25 13 / 1 0.844 0.943 0.96872 0.6971 

25 14 / 3 0.819 0.891 0.97050 0.6765 

25 15 / 1 0.766 0.801 0.97352 0.6479 

25 16 / 1 0.713 0.701 0.97688 0.6073 

25 17 / 1 0.706 0.699 0.97693 0.6115 

25 18 / 2 0.670 0.642 0.97883 0.5912 

25 19 / 1 0.553 0.478 0.98423 0.5321 

25 20 / 2 0.436 0.344 0.98866 0.4839 

25 29 / 3 0.349 0.261 0.99137 0.4600 

25 30 / 4 0.234 0.167 0.99444 0.4406 

40 9 / 2 1.179 1.650 0.94368 0.9096 

40 10 / 2 1.116 1.481 0.94977 0.8542 

40 11 / 2 1.036 1.290 0.95654 0.7935 

40 12 / 3 0.917 1.030 0.96559 0.7067 

40 13 / 2 0.882 0.963 0.96790 0.6844 

40 14 / 2 0.851 0.900 0.97005 0.6607 

40 15 / 2 0.802 0.818 0.97285 0.6352 

40 16 / 2 0.750 0.720 0.97614 0.5960 

40 17 / 3 0.728 0.698 0.97689 0.5940 

40 17 / 4 0.751 0.727 0.97592 0.6007 

40 18 / 3 0.696 0.654 0.97836 0.5812 

40 18 / 4 0.767 0.743 0.97538 0.6014 

40 19 / 3 0.583 0.494 0.98371 0.5215 

40 20 / 3 0.453 0.347 0.98854 0.4706 

40 29 / 4 0.365 0.265 0.99125 0.4461 

40 30 / 6 0.252 0.173 0.99425 0.4240 
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Tab. 9.10 Water activities of Mg2Fe(CN)6 solutions - II 

T [°C] Vessel/  
Weighing 

Mg2Fe(CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

aW φ 

60 9 / 3 1.266 1.628 0.94432 0.8373 

60 10 / 3 1.225 1.510 0.94859 0.7971 

60 11 / 3 1.155 1.314 0.95559 0.7276 

60 12 / 4 1.022 1.076 0.96394 0.6647 

60 13 / 3 0.970 0.985 0.96710 0.6379 

60 15 / 3 0.898 0.859 0.97141 0.5974 

60 17 / 5 0.816 0.726 0.97595 0.5523 

60 18 / 5 0.873 0.741 0.97543 0.5273 

60 19 / 5 0.727 0.518 0.98293 0.4386 

60 20 / 4 0.555 0.361 0.98812 0.3982 

60 29 / 7 0.470 0.286 0.99058 0.3726 

60 30 / 7 0.315 0.186 0.99385 0.3628 
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Tab. 9.11 Water activities of Mg3[Fe(CN)6]2 solutions-I 

T [°C] Vessel/  
Weighing 

Mg3[Fe(CN)6]2 
[mol/kg] 

NaCl 
[mol/kg] 

aW φ 

25 7 / 1 0.636 2.316 0.91955 1.4630 

25 8 / 1 0.593 2.062 0.92909 1.3776 

25 17 / 1 0.299 0.699 0.97693 0.8673 

25 18 / 2 0.282 0.642 0.97883 0.8424 

25 19 / 1 0.230 0.478 0.98423 0.7684 

25 20 / 2 0.179 0.344 0.98866 0.7059 

25 26 / 2 0.583 2.014 0.93087 1.3645 

25 27 / 1 0.522 1.680 0.94302 1.2484 

25 28 / 1 0.394 1.069 0.96443 1.0206 

25 29 / 3 0.143 0.261 0.99137 0.6705 

25 30 / 4 0.098 0.167 0.99444 0.6307 

40 7 / 2 0.656 2.344 0.91777 1.4511 

40 8 / 2 0.600 2.023 0.92993 1.3449 

40 17 / 3 0.304 0.698 0.97689 0.8526 

40 17 / 4 0.315 0.727 0.97592 0.8594 

40 18 / 3 0.291 0.654 0.97836 0.8350 

40 18 / 4 0.320 0.743 0.97538 0.8639 

40 19 / 3 0.239 0.494 0.98371 0.7632 

40 20 / 3 0.184 0.347 0.98854 0.6961 

40 26 / 3 0.596 2.012 0.93037 1.3447 

40 26 / 4 0.616 2.095 0.92726 1.3619 

40 27 / 2 0.533 1.680 0.94258 1.2312 

40 28 / 2 0.403 1.071 0.96419 1.0057 

40 29 / 4 0.148 0.265 0.99125 0.6609 

40 30 / 6 0.103 0.173 0.99425 0.6193 
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Tab. 9.12 Water activities of Mg3[Fe(CN)6]2 solutions-II 

T [°C] Vessel/  
Weighing 

Mg3[Fe(CN)6]2 
[mol/kg] 

NaCl 
[mol/kg] 

aW φ 

60 7 / 3 0.695 2.392 0.91566 1.4067 

60 8 / 3 0.638 2.084 0.92740 1.3119 

60 17 / 5 0.332 0.726 0.97595 0.8152 

60 18 / 5 0.343 0.741 0.97543 0.8048 

60 19 / 5 0.271 0.518 0.98293 0.7051 

60 20 / 4 0.205 0.361 0.98812 0.6480 

60 26 / 5 0.672 2.219 0.92227 1.3359 

60 27 / 4 0.569 1.706 0.94145 1.1778 

60 28 / 4 0.465 1.201 0.95960 0.9846 

60 29 / 7 0.171 0.286 0.99058 0.6143 

60 30 / 7 0.117 0.186 0.99385 0.5862 
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Tab. 9.13 Isoactive concentrations of mixed Na3Fe(CN)6-NaCl solutions at 25 to 

60°C - I 

T [°C] 

(Na.K)3Fe(
CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

Na 
[mol/kg] 

K 
[mol/kg] aW phi 

25 2.052 0 6.033 0.122 0.8243 1.307 

25 1.906 0.3393 5.944 0.113 0.8243 1.292 

25 1.782 0.6284 5.868 0.106 0.8243 1.279 

25 1.643 0.9519 5.784 0.0976 0.8243 1.265 

25 1.492 1.302 5.690 0.0886 0.8243 1.251 

25 1.362 1.597 5.603 0.0809 0.8243 1.241 

25 1.218 1.925 5.506 0.0723 0.8243 1.230 

25 1.086 2.220 5.414 0.0645 0.8243 1.221 

25 0.9416 2.547 5.316 0.0559 0.8243 1.211 

25 0.8072 2.848 5.222 0.0480 0.8243 1.202 

25 0.6678 3.154 5.118 0.0397 0.8243 1.194 

25 0.5335 3.451 5.020 0.0317 0.8243 1.187 

25 0.4013 3.740 4.920 0.0238 0.8243 1.181 

25 0.2677 4.033 4.820 0.0159 0.8243 1.174 

25 0.1387 4.312 4.720 0.0082 0.8243 1.168 

25 0 4.615 4.615 0 0.8243 1.162 

25 0 4.613 4.613 0 0.8243 1.163 

25 0 4.612 4.612 0 0.8243 1.163 
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Tab. 9.14 Isoactive concentrations of mixed Na3Fe(CN)6-NaCl solutions at 25 to 

60°C - II 

T [°C] 

(Na.K)3F
e(CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

NaCl 
medium 
[mol/kg] 

Na 
[mol/kg] 

K 
[mol/kg] aW phi 

40 2.036 0  5.988 0.121 0.8251 1.310 

40 1.894 0.3371  5.905 0.112 0.8251 1.294 

40 1.770 0.6242  5.829 0.105 0.8251 1.282 

40 1.631 0.9447  5.740 0.0969 0.8251 1.269 

40 1.481 1.292  5.646 0.0880 0.8251 1.255 

40 1.352 1.585  5.561 0.0803 0.8251 1.244 

40 1.209 1.912  5.469 0.0718 0.8251 1.232 

40 1.078 2.203  5.373 0.0640 0.8251 1.224 

40 0.9346 2.528  5.276 0.0555 0.8251 1.214 

40 0.8005 2.825  5.179 0.0476 0.8251 1.206 

40 0.6621 3.128  5.075 0.0393 0.8251 1.199 

40 0.5287 3.419  4.974 0.0314 0.8251 1.192 

40 0.3978 3.706  4.876 0.0236 0.8251 1.185 

40 0.2655 3.999  4.780 0.0158 0.8251 1.178 

40 0.1376 4.276  4.680 0.00817 0.8251 1.173 

40 0 4.577  4.577 0 0.8251 1.166 

40 0 4.576  4.576 0 0.8251 1.166 

40 0 4.573 4.5756 4.573 0 0.8251 1.167 
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Tab. 9.15 Isoactive concentrations of mixed Na3Fe(CN)6-NaCl solutions at 25 to 

60°C - III 

T [°C] 

(Na.K)3Fe(
CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

Na 
[mol/kg] 

K 
[mol/kg] aW phi 

60 2.082 0 6.122 0.124 0.8219 1.307 

60 1.934 0.3443 6.031 0.115 0.8219 1.292 

60 1.796 0.6333 5.914 0.107 0.8219 1.288 

60 1.662 0.9630 5.851 0.0987 0.8219 1.270 

60 1.508 1.316 5.751 0.0896 0.8219 1.256 

60 1.372 1.608 5.644 0.0815 0.8219 1.251 

60 1.231 1.946 5.566 0.0731 0.8219 1.235 

60 1.095 2.238 5.457 0.0650 0.8219 1.229 

60 0.9510 2.572 5.369 0.0565 0.8219 1.217 

60 0.8141 2.872 5.266 0.0484 0.8219 1.209 

60 0.6732 3.180 5.160 0.0400 0.8219 1.203 

60 0.5377 3.478 5.059 0.0319 0.8219 1.195 

60 0.4047 3.771 4.960 0.0240 0.8219 1.188 

60 0.2699 4.065 4.858 0.0160 0.8219 1.182 

60 0.1398 4.346 4.757 0.00831 0.8219 1.177 

60 0 4.651 4.651 0 0.8219 1.170 

60 0 4.655 4.655 0 0.8219 1.169 

60 0 4.656 4.656 0 0.8219 1.169 

60 2.276 0 6.694 0.135 0.8113 1.275 

60 2.096 0.3731 6.537 0.125 0.8113 1.271 

60 1.926 0.6791 6.342 0.114 0.8113 1.281 

60 1.793 1.039 6.311 0.107 0.8113 1.255 

60 1.614 1.409 6.156 0.0959 0.8113 1.251 

60 1.447 1.695 5.949 0.0859 0.8113 1.265 

60 1.310 2.072 5.926 0.0778 0.8113 1.237 

60 1.153 2.357 5.748 0.0685 0.8113 1.245 

60 1.007 2.723 5.683 0.0598 0.8113 1.225 

60 0.8547 3.016 5.529 0.0508 0.8113 1.228 

60 0.7085 3.347 5.430 0.0421 0.8113 1.218 

60 0.5647 3.653 5.313 0.0335 0.8113 1.214 

60 0.4267 3.976 5.231 0.0253 0.8113 1.202 

60 0.2847 4.289 5.126 0.0169 0.8113 1.195 

60 0.1475 4.584 5.017 0.00876 0.8113 1.190 

60 0 4.897 4.897 0 0.8113 1.185 

60 0 4.893 4.893 0 0.8113 1.186 

60 0 4.899 4.899 0 0.8113 1.185 
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Tab. 9.16 Isoactive concentrations of mixed Na3Fe(CN)6-NaCl solutions at 25 to 

60°C - IV 

T [°C] 

(Na.K)3Fe(
CN)6 
[mol/kg] 

NaCl 
[mol/kg] 

Na 
[mol/kg] 

K 
[mol/kg] aW phi 

40 2.290 0 6.733 0.136 0.8102 1.276 

40 2.106 0.3749 6.568 0.125 0.8102 1.273 

40 1.934 0.6820 6.369 0.115 0.8102 1.284 

40 1.801 1.043 6.339 0.107 0.8102 1.257 

40 1.621 1.415 6.181 0.0963 0.8102 1.254 

40 1.452 1.702 5.971 0.0863 0.8102 1.268 

40 1.314 2.078 5.942 0.0781 0.8102 1.241 

40 1.157 2.365 5.769 0.0687 0.8102 1.248 

40 1.010 2.733 5.704 0.0600 0.8102 1.229 

40 0.8575 3.025 5.547 0.0509 0.8102 1.232 

40 0.7114 3.360 5.452 0.0423 0.8102 1.221 

40 0.5667 3.666 5.332 0.0337 0.8102 1.217 

40 0.4281 3.988 5.247 0.0254 0.8102 1.206 

40 0.2856 4.303 5.143 0.0170 0.8102 1.198 

40 0.1477 4.591 5.025 0.00877 0.8102 1.195 

40 0 4.907 4.907 0 0.8102 1.190 

40 0 4.911 4.911 0 0.8102 1.189 

40 0 4.907 4.907 0 0.8102 1.190 
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9.2 pH Measurements in salt solutions 

Tab. 9.17 Results of the pH measurements in NaCl solutions at 25°C 

No. 
NaCl  
[mol/kg] 

HCl  
[mol/kg] pHobs ΔpH 

1 0 0.001004 3.014 -0.016 

2 0.294 0.000996 3.002 0.000 

3 0.598 0.000994 2.965 0.038 

4 0.999 0.000998 2.898 0.102 

5 1.498 0.000990 2.820 0.184 

6 2.000 0.000988 2.737 0.268 

7 2.496 0.000999 2.643 0.357 

8 2.990 0.001002 2.556 0.443 

9 3.493 0.000998 2.463 0.538 

10 3.987 0.001002 2.361 0.638 

12 4.981 0.000995 2.194 0.808 

13 5.479 0.000995 2.106 0.896 

14 5.950 0.000994 2.021 0.982 

Tab. 9.18 Results of the pH measurements in NaCl solutions at 40°C 

No. 
NaCl  
[mol/kg] 

HCl  
[mol/kg] pHobs ΔpH 

1 0 0.001004 3.014 -0.016 

2 0.294 0.000996 3.003 -0.001 

3 0.598 0.000994 2.963 0.040 

4 0.999 0.000998 2.900 0.101 

5 1.498 0.000990 2.832 0.172 

6 2.000 0.000988 2.746 0.259 

7 2.496 0.000999 2.656 0.344 

8 2.990 0.001002 2.574 0.425 

9 3.493 0.000998 2.490 0.511 

10 3.987 0.001002 2.403 0.596 

12 4.981 0.000995 2.243 0.759 

13 5.479 0.000995 2.151 0.852 

14 5.950 0.000994 2.075 0.928 
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Tab. 9.19 Results of the pH measurements in NaCl solutions at 60°C 

No. 
NaCl  
[mol/kg] 

HCl  
[mol/kg] pHobs ΔpH 

1 0 0.001004 3.015 -0.017 

2 0.294 0.000996 3.009 -0.007 

3 0.598 0.000994 2.982 0.021 

4 0.999 0.000998 2.932 0.069 

5 1.498 0.000990 2.856 0.148 

6 2.000 0.000988 2.782 0.223 

7 2.496 0.000999 2.706 0.294 

8 2.990 0.001002 2.632 0.367 

9 3.493 0.000998 2.556 0.444 

10 3.987 0.001002 2.470 0.529 

12 4.981 0.000995 2.326 0.676 

13 5.479 0.000995 2.247 0.755 

14 5.950 0.000994 2.170 0.832 

Tab. 9.20 Results of the pH measurements in MgCl2 solutions at 25°C 

No. 
MgCl2  
[mol/kg] 

HCl  
[mol/kg] pHobs ΔpH 

1 0 0.001001 3.015 -0.016 

2 0.300 0.001004 2.901 0.097 

3 0.600 0.001000 2.784 0.216 

4 1.000 0.000998 2.581 0.420 

5 1.501 0.000992 2.338 0.665 

6 2.001 0.000998 2.070 0.931 

7 2.501 0.001001 1.797 1.202 

8 2.998 0.000996 1.520 1.481 

9 3.505 0.001002 1.228 1.771 

10 4.000 0.000999 0.952 2.048 

11 4.499 0.001001 0.667 2.333 

12 4.990 0.000999 0.389 2.611 

13 5.426 0.000994 0.148 2.855 
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Tab. 9.21 Results of the pH measurements in MgCl2 solutions at 40°C 

No. 
MgCl2  
[mol/kg] 

HCl  
[mol/kg] pHobs ΔpH 

1 0 0.001001 3.016 -0.016 

2 0.300 0.001004 2.899 0.099 

3 0.600 0.001000 2.769 0.231 

4 1.000 0.000998 2.567 0.434 

5 1.501 0.000992 2.329 0.674 

6 2.001 0.000998 2.071 0.930 

7 2.501 0.001001 1.816 1.184 

8 2.998 0.000996 1.548 1.454 

9 3.505 0.001002 1.272 1.727 

10 4.000 0.000999 1.017 1.984 

11 4.499 0.001001 0.736 2.264 

12 4.990 0.000999 0.471 2.529 

13 5.426 0.000994 0.248 2.754 

Tab. 9.22 Results of the pH measurements in MgCl2 solutions at 60°C 

No. 
MgCl2  
[mol/kg] 

HCl  
[mol/kg] pHobs ΔpH 

1 0 0.001001 3.016 -0.017 

2 0.300 0.001004 2.927 0.072 

3 0.600 0.001000 2.817 0.183 

4 1.000 0.000998 2.636 0.365 

5 1.501 0.000992 2.422 0.582 

6 2.001 0.000998 2.183 0.818 

7 2.501 0.001001 1.946 1.054 

8 2.998 0.000996 1.701 1.301 

9 3.505 0.001002 1.446 1.553 

10 4.000 0.000999 1.211 1.790 

11 4.499 0.001001 0.940 2.060 

12 4.990 0.000999 0.699 2.301 

13 5.426 0.000994 0.461 2.542 
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9.3 Redox measurements in salt solutions 

Tab. 9.23 Standard half-cell potentials of Ag.AgCl reference electrode with 3M 

KCl filling (Metrohm. supplementary information) 

T [°C] E0 [mV] 

0 224.2 

10 217.4 

20 210.5 

25 207 

30 203.4 

40 196.1 

50 188.4 

60 180.3 

70 172.1 

80 163.1 

90 153.3 

95 148.1 

Tab. 9.24 Composition of NaCl solutions used for the measurement of the redox 

potential 

No. Na+ Cl- 
Fe(CN)6

4- 

Fe(CN)6
3- 

K+ HPO4
2- H2PO4

- 

 
[mol/kg] [mol/kg] [mol/kg] [mol/kg] [mol/kg] [mol/kg] [mol/kg] 

1 0.00047267 0 0.00460 0.00560 0.0354 0.000236 0.000236 

2 0.308 0.307 0.00412 0.00461 0.0305 0.000247 0.000247 

3 0.408 0.407 0.00442 0.00472 0.0321 0.000242 0.000242 

4 0.833 0.832 0.00440 0.00481 0.0323 0.000241 0.000241 

5 1.368 1.368 0.00451 0.00449 0.0318 0.000242 0.000242 

6 2.035 2.035 0.00441 0.00471 0.0320 0.000232 0.000232 

7 2.435 2.434 0.00431 0.00493 0.0322 0.000241 0.000241 

8 2.739 2.738 0.00442 0.00472 0.0321 0.000247 0.000247 

9 3.411 3.411 0.00442 0.00484 0.0324 0.000238 0.000238 

10 3.887 3.886 0.00440 0.00481 0.0323 0.000246 0.000246 

11 4.076 4.076 0.00448 0.00479 0.0325 0.000235 0.000235 

12 4.866 4.865 0.00441 0.00471 0.0320 0.000242 0.000242 

13 5.439 5.439 0.00482 0.00505 0.0346 0.000237 0.000237 

14 5.868 5.867 0.00452 0.00483 0.0328 0.000247 0.000247 
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Tab. 9.25 Composition of MgCl2 solutions used for the measurement of the redox 

potential (1st set of solutions) 

No. MgCl2 Fe(CN)6
4- Fe(CN)6

3- K+ Na+ HPO4
2- H2PO4

- 

 
[mol/kg] [mol/kg] [mol/kg] [mol/kg] [mol/kg] [mol/kg] [mol/kg] 

1 0 0.00356 0.00300 0.0235 0.000494 0.000247 0.000247 

2 0.284 0.00372 0.00341 0.0254 0.000474 0.000237 0.000237 

3 0.570 0.00355 0.00349 0.0249 0.000473 0.000237 0.000237 

4 0.957 0.00353 0.00347 0.0248 0.000482 0.000241 0.000241 

5 1.400 0.00354 0.00331 0.0244 0.000472 0.000236 0.000236 

6 1.865 0.00353 0.00339 0.0245 0.000470 0.000235 0.000235 

7 2.324 0.00353 0.00354 0.0250 0.000498 0.000249 0.000249 

8 2.786 0.00361 0.00338 0.0248 0.000469 0.000235 0.000235 

9 3.241 0.00351 0.00320 0.0239 0.000468 0.000234 0.000234 

10 3.718 0.00353 0.00338 0.0245 0.000489 0.000245 0.000245 

11 4.152 0.00350 0.00360 0.0251 0.000476 0.000238 0.000238 

12 4.607 0.00334 0.00335 0.0237 0.000513 0.000257 0.000257 

13 5.058 0.00349 0.00335 0.0243 0.000465 0.000233 0.000233 

14 5.329 0.00357 0.00335 0.0245 0.000455 0.000228 0.000228 

Tab. 9.26 Composition of MgCl2 solutions used for the measurement of the redox 

potential (2nd set of solutions) 

No. MgCl2 Fe(CN)6
4- Fe(CN)6

3- K+ Na+ HPO4
2- H2PO4

- 

 
[mol/kg] [mol/kg] [mol/kg] [mol/kg] [mol/kg] [mol/kg] [mol/kg] 

1 0 0.00367 0.00356 0.0256 0.000455 0.000228 0.000228 

2 0.266 0.00367 0.00356 0.0256 0.000455 0.000227 0.000227 

3 0.532 0.00367 0.00355 0.0256 0.000454 0.000227 0.000227 

4 0.880 0.00366 0.00355 0.0255 0.000454 0.000227 0.000227 

5 1.317 0.00366 0.00354 0.0255 0.000453 0.000227 0.000227 

6 1.755 0.00365 0.00354 0.0254 0.000452 0.000226 0.000226 

7 2.190 0.00364 0.00353 0.0254 0.000451 0.000226 0.000226 

8 2.618 0.00364 0.00353 0.0254 0.000451 0.000226 0.000226 

9 3.141 0.00224 0.00217 0.0157 0.000462 0.000231 0.000231 

10 3.642 0.00114 0.00110 0.00811 0.000470 0.000235 0.000235 

11 4.183 0.000291 0.000282 0.00225 0.000480 0.000240 0.000240 

12 4.668 0.000115 0.000112 0.00103 0.000475 0.000238 0.000238 

13 5.106 0.000116 0.000113 0.00104 0.000480 0.000240 0.000240 

14 5.372 0.000116 0.000112 0.00104 0.000478 0.000239 0.000239 
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Tab. 9.27 Composition of mixed NaCl-MgCl2 solutions used for the measurement 

of the redox potential  

No
. Mg Na+ 

Cl- Fe(CN)6
4

- 
Fe(CN)6

3

- K+ HPO4
2- H2PO4

- 

 

[mol/kg
] 

[mol/kg
] 

[mol/kg
] [mol/kg] [mol/kg] 

[mol/kg
] 

[mol/kg
] 

[mol/kg
] 

1 0 5.311 5.311 0.00368 0.00356 0.0256 0.000228 0.000228 

2 0.2778 4.868 5.423 0.00367 0.00356 0.0256 0.000228 0.000228 

3 0.5550 4.392 5.502 0.00367 0.00355 0.0256 0.000227 0.000227 

4 0.9236 3.760 5.607 0.00366 0.00355 0.0255 0.000227 0.000227 

5 1.384 2.752 5.520 0.00366 0.00354 0.0255 0.000227 0.000227 

6 1.895 2.152 5.942 0.00226 0.00219 0.0158 0.000233 0.000233 

7 2.356 1.597 6.310 0.00225 0.00218 0.0157 0.000232 0.000232 

8 2.835 1.025 6.694 0.00225 0.00218 0.0158 0.000232 0.000232 

9 3.296 0.6388 7.230 0.00168 0.00163 0.0119 0.000231 0.000231 

10 3.857 0.4247 8.138 0.000919 0.000890 0.00658 0.000237 0.000237 

11 4.399 0.2685 9.066 0.000233 0.000226 0.00185 0.000240 0.000240 

12 4.887 0.1658 9.939 0.000116 0.000113 0.00104 0.000240 0.000240 

13 5.374 0.1002 10.849 0.000116 0.000113 0.00104 0.000240 0.000240 

14 5.663 0.0667 11.392 0.000116 0.000113 0.00104 0.000240 0.000240 

Tab. 9.28 Results of the redox potential measurements in NaCl solutions at 25°C 

No. T [°C] pHobs pcH (calc.)- Eobs [mV] Ehobs [mV] ΔEh [mV] 

1 25.0 7.003 6.943 196.5 403.4 43.4 

2 25.0 6.619 6.577 229.6 436.5 78.7 

3 25.0 6.519 6.490 235.6 442.5 85.9 

4 25.0 6.280 6.314 252.1 459.0 101.8 

5 25.0 6.084 6.207 266.2 473.1 118.3 

6 25.0 5.866 6.104 280.1 487.0 130.4 

7 25.0 5.885 6.194 287.3 494.2 135.8 

8 25.0 5.703 6.066 292.2 499.1 142.5 

9 25.0 5.532 6.016 302.3 509.2 152.0 

10 25.0 5.574 6.143 308.3 515.2 158.0 

11 25.0 5.410 6.013 310.8 517.7 161.0 

12 -  -   -   -    

13 25.0 5.160 6.011 326.3 533.2 177.0 

14 25.1 5.242 6.171 330.4 537.3 182.5 
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Tab. 9.29 Results of the redox potential measurements in NaCl solutions at 40°C 

No. T [°C] pHobs pcH (calc.)- Eobs [mV] Ehobs [mV] ΔEh [mV] 

1 40.1 7.130 7.130 176.6 372.6 53.0 

2 40.1 6.674 6.674 211.1 407.1 89.8 

3 40 6.495 6.495 216.6 412.7 96.3 

4 39.9 6.400 6.400 234.3 430.5 113.2 

5 40 6.227 6.227 248.7 444.8 130.3 

6 40 6.035 6.035 262.9 459.0 142.6 

7 40.1 5.974 5.974 269.8 465.8 147.8 

8 40.1 5.867 5.867 275.3 471.3 155.2 

9 40 5.719 5.719 285.7 481.8 164.8 

10 40 5.681 5.681 291.4 487.5 170.5 

11 40 5.616 5.616 294.4 490.5 174.1 

12 40 5.619 5.619 303.4 499.5 183.1 

13 40 5.402 5.402 310.4 506.5 190.6 

14 39.9 5.394 5.394 314 510.2 195.3 

Tab. 9.30 Results of the redox potential measurements in NaCl solutions at 60°C 

No. T [°C] pHobs pcH (calc.)- Eobs [mV] Ehobs [mV] ΔEh [mV] 

1 60.0 7.037 7.009 138.7 319.2 52.8 

2 60.1 6.548 6.541 175.3 355.7 92.0 

3 60.0 6.386 6.392 180.7 361.2 98.5 

4 60.1 6.261 6.322 200.1 380.5 117.5 

5 60.0 6.104 6.242 215 395.5 134.9 

6 60.0 5.920 6.157 230.1 410.6 147.9 

7 59.9 5.855 6.152 237.2 417.8 152.9 

8 60.0 5.758 6.102 242.7 423.2 160.5 

9 60.1 5.624 6.072 253.3 433.7 170.7 

10 60.0 5.583 6.103 259.6 440.1 176.8 

11 60.0 5.520 6.069 262.8 443.3 180.6 

12 60.0 5.515 6.187 272.3 452.8 190.1 

13 60.0 5.321 6.083 279.5 460.0 197.9 

14 59.9 5.315 6.142 283.2 463.8 202.7 
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Tab. 9.31 Results of the redox potential measurements in MgCl2 solutions at 

25°C (1st series) 

No. T [°C] pHobs pcH (calc.)- Eobs [mV] Ehobs [mV] ΔEh [mV] 

1 25.1 6.901 6.860 203.6 410.5 51.3 

2 25.1 5.644 5.697 283 489.9 132.9 

3 25.1 5.309 5.504 305.1 512.0 156.8 

4 25.1 4.979 5.378 328 534.9 179.6 

5 25 4.633 5.271 350.4 557.3 200.6 

6 25 4.313 5.204 372.1 579.0 223.0 

7 25 4.024 5.165 392.8 599.7 244.9 

8 25 3.750 5.145 411 617.9 261.3 

9 25 3.511 5.155 430.6 637.5 280.2 

10 25.1 3.137 5.044 487.9 694.8 338.96 

11 25.1 2.894 5.040 515.6 722.5 368.5 

12 24.9 2.663 5.059 561.6 768.6 413.5 

13 25 2.430 5.075 595.3 802.2 446.2 

14 25 2.242 5.037 612.1 819.0 462.4 

Tab. 9.32 Results of the redox potential measurements in MgCl2 solutions at 

25°C (2nd series) 

No. T [°C] pHobs pcH (calc.)- Eobs [mV] Ehobs [mV] ΔEh [mV] 

1 25 6.820 6.778 193.4 400.3 44.5 

2 25 5.621 5.667 278.8 485.7 129.9 

3 25 5.296 5.475 299.8 506.7 150.9 

4 25 4.977 5.340 320.8 527.7 171.9 

5 25 4.659 5.259 342.2 549.1 193.3 

6 25 4.353 5.193 363.8 570.7 214.9 

7 25 4.073 5.152 383.3 590.2 234.4 

8 25.1 3.822 5.137 402 608.9 253.3 

9 25.1 3.493 5.095 423.4 630.3 274.7 

10 25 3.264 5.141 442.7 649.6 293.8 

11 25 2.903 5.079 460.9 667.8 312.0 

12 25.1 2.670 5.115 476 682.9 327.3 

13 25.1 2.335 5.024 489.1 696.0 340.4 

14 25.1 2.343 5.180 496.3 703.2 347.6 
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Tab. 9.33 Results of the redox potential measurements in MgCl2 solutions at 

40°C 

No. T [°C] pHobs pcH (calc.)- Eobs [mV] Ehobs [mV] ΔEh [mV] 

1 40.1 6.734 6.705 167.5 363.5 48.3 

2 40.0 5.647 5.714 258.1 454.2 138.7 

3 40.0 5.365 5.563 280.1 476.2 160.7 

4 40.0 5.081 5.457 302.1 498.2 182.7 

5 40.0 4.801 5.404 324.3 520.4 204.9 

6 40.0 4.544 5.377 346.6 542.7 227.2 

7 40.1 4.323 5.385 366.6 562.6 247.4 

8 40.1 4.121 5.410 386.1 582.1 266.9 

9 40.0 3.706 5.268 408.3 604.4 288.9 

10 40.1 3.409 5.234 428.2 624.2 309.0 

11 40.1 2.946 5.057 446.5 642.5 327.3 

12 40.1 2.667 5.034 461.8 657.8 342.6 

13 40.1 2.342 4.943 473.4 669.4 354.2 

14 40.1 2.358 5.100 480.5 676.5 362.2 

Tab. 9.34 Results of the redox potential measurements in MgCl2 solutions at 

60°C (1s series) 

No. T [°C] pHobs pcH (calc.)- Eobs [mV] Ehobs [mV] ΔEh [mV] 

1 60.1 6.901 6.860 288.5 468.9 203.5 

2 59.9 5.644 5.680 243.8 424.4 160.9 

3 59.9 5.309 5.470 265.2 445.8 184.2 

4 59.9 4.979 5.321 289.8 470.4 208.8 

5 60.1 4.633 5.186 314.9 495.3 232.9 

6 60.1 4.313 5.090 337.3 517.7 256.0 

7 60.1 4.024 5.024 359.4 539.8 279.5 

8 60.1 3.750 4.975 384.14 564.5 302.2 

9 60 3.511 4.957 402.2 582.7 319.8 
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Tab. 9.35 Results of the redox potential measurements in MgCl2 solutions at 

60°C (2nd series) 

No. T [°C] pHobs pcH (calc.)- Eobs [mV] Ehobs [mV] ΔEh [mV] 

1 60 6.384 6.342 147.9 328.4 66.7 

2 60 5.696 5.726 231.1 411.6 149.9 

3 60.1 5.453 5.599 255.2 435.6 174.2 

4 60.1 5.219 5.529 278.9 459.3 197.9 

5 60 5.029 5.548 303.7 484.2 222.5 

6 60 4.762 5.494 325.5 506.0 244.3 

7 60 4.597 5.542 347.3 527.8 266.1 

8 60 4.447 5.602 368.9 549.4 287.7 

9 60.1 4.121 5.530 392.2 572.6 311.2 

10 60.1 3.931 5.584 412.2 592.6 331.2 

11 60.1 3.411 5.329 432 612.4 351.0 

12 60.1 3.035 5.193 446.3 626.7 365.3 

13 60 2.816 5.191 459.7 640.2 378.5 

14 60.1 2.906 5.412 464.6 645.0 383.6 

Tab. 9.36 Results of the redox potential measurements in mixed NaCl/MgCl2 so-

lutions at 25°C 

No. T [°C] pHobs pcH (calc.)- Eobs [mV] Ehobs [mV] ΔEh [mV] 

1 25.1 5.488 6.363 324.5 531.4 177.5 

2 24.9 5.097 6.036 333.4 540.3 186.0 

3 25.1 4.865 5.861 342.1 549.0 195.1 

4 25.1 4.748 5.818 353.1 560.0 206.1 

5 25.1 4.577 5.698 363.4 570.3 216.4 

6 25.1 4.164 5.435 380.7 587.6 233.7 

7 25.1 4.082 5.488 397.3 604.2 250.3 

8 25.1 3.757 5.301 410.3 617.2 263.3 

9 25.1 3.647 5.359 424.2 631.1 277.2 

10 25.1 3.240 5.199 441.3 648.2 294.3 

11 25.1 2.930 5.141 458.4 665.3 311.4 

12 25.1 2.711 5.160 471.2 678.1 324.2 

13 25.1 2.519 5.206 482.3 689.2 335.3 

14 25.1 2.395 5.228 488.3 695.2 341.3 
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Tab. 9.37 Results of the redox potential measurements in mixed NaCl/MgCl2 so-

lutions at 40°C 

No. T [°C] pHobs pcH (calc.)- Eobs [mV] Ehobs [mV] ΔEh [mV] 

1 40.1 5.536 6.422 302 498.0 184.5 

2 40.1 5.125 6.069 311.5 507.5 194.0 

3 40.1 4.903 5.899 321.2 517.2 203.7 

4 39.9 4.793 5.857 333.5 529.7 215.7 

5 40.0 4.649 5.756 344.7 540.8 227.0 

6 40.0 4.252 5.502 363.1 559.2 245.4 

7 40.0 4.106 5.484 380.5 576.6 262.8 

8 40.0 3.838 5.347 394.4 590.5 276.7 

9 40.0 3.713 5.381 409.1 605.2 291.4 

10 40.1 3.301 5.205 427 623.0 309.5 

11 40.1 2.968 5.114 443.9 639.9 326.4 

12 40.0 2.732 5.104 457.2 653.3 339.5 

13 40.1 2.553 5.152 469.1 665.1 351.6 

14 40.1 2.433 5.171 475.7 671.7 358.2 

Tab. 9.38 Results of the redox potential measurements in mixed NaCl/MgCl2 so-

lutions at 60°C 

No. T [°C] pHobs pcH (calc.)- Eobs [mV] Ehobs [mV] ΔEh [mV] 

1 60.1 5.593 6.467 272.2 452.6 193.0 

2 60.1 5.072 5.993 282.6 463.0 203.4 

3 60.1 4.812 5.774 293.3 473.7 214.1 

4 60.1 4.613 5.629 306.5 486.9 227.3 

5 60.0 4.442 5.481 318.5 499.0 239.1 

6 60.0 4.104 5.264 338.3 518.8 258.9 

7 60.1 3.948 5.217 357.1 537.5 277.9 

8 60.1 3.708 5.087 372.9 553.3 293.7 

9 60.2 3.609 5.129 388.1 568.4 309.1 

10 60.0 3.242 4.977 407.7 588.2 328.3 

11 60.0 2.924 4.880 428.4 608.9 349.0 

12 60.1 2.728 4.893 444.1 624.5 364.9 

13 60.1 2.557 4.932 457.5 637.9 378.3 

14 60.1 2.426 4.930 465.5 645.9 386.3 
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9.4 Solubility measurements 

Tab. 9.39 Solubility in the system NaCl-Na4Fe(CN)6-H2O at 25°C 

NaCl  
[mol/kg] 

Na4Fe(CN)6 

[mol/kg] Solid phase 

0.000 0.699 Na4Fe(CN)6·10H2O 

0.601 0.500 Na4Fe(CN)6·10H2O 

1.21 0.337 Na4Fe(CN)6·10H2O 

1.82 0.219 Na4Fe(CN)6·10H2O 

2.40 0.143 Na4Fe(CN)6·10H2O 

2.96 0.108 Na4Fe(CN)6·10H2O 

3.60 0.0592 Na4Fe(CN)6·10H2O 

4.15 0.0428 Na4Fe(CN)6·10H2O 

4.66 0.0308 Na4Fe(CN)6·10H2O 

5.23 0.0230 Na4Fe(CN)6·10H2O 

5.80 0.0174 Na4Fe(CN)6·10H2O 

5.98 0.0160 Na4Fe(CN)6·10H2O 
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Tab. 9.40 Solubility in the system NaCl-Na4Fe(CN)6-H2O at 40°C 

NaCl  
[mol/kg] 

Na4Fe(CN)6 

[mol/kg] Solid phase 

0 0.909 Na4Fe(CN)6·10H2O 

0.615 0.704 Na4Fe(CN)6·10H2O 

1.46 0.462 Na4Fe(CN)6·10H2O 

2.12 0.320 Na4Fe(CN)6·10H2O 

2.91 0.201 Na4Fe(CN)6·10H2O 

3.55 0.138 Na4Fe(CN)6·10H2O 

4.05 0.0961 Na4Fe(CN)6·10H2O 

4.67 0.0713 Na4Fe(CN)6·10H2O 

5.05 0.0587 Na4Fe(CN)6·10H2O 

5.37 0.0482 Na4Fe(CN)6·10H2O 

5.65 0.0625 Na4Fe(CN)6·10H2O 

5.81 0.0424 Na4Fe(CN)6·10H2O 

5.92 0.0430 Na4Fe(CN)6·10H2O + NaCl 

6.22 0 NaCl 

2.16 0.352 Na4Fe(CN)6·10H2O 

3.10 0.199 Na4Fe(CN)6·10H2O 

3.92 0.130 Na4Fe(CN)6·10H2O 

4.75 0.0719 Na4Fe(CN)6·10H2O + white solid 

4.89 0.0667 Na4Fe(CN)6·10H2O + white solid 

Tab. 9.41 Solubility in the system NaCl-Na4Fe(CN)6-H2O at 60°C 

NaCl  
[mol/kg] 

Na4Fe(CN)6 

[mol/kg] Solid phase 

2.46 0.619 Na4Fe(CN)6·10H2O 

3.67 0.392 Na4Fe(CN)6·10H2O 

4.76 0.225 Na4Fe(CN)6·10H2O + white solid 

4.83 0.240 Na4Fe(CN)6·10H2O +white solid 

4.84 0.234 Na4Fe(CN)6·10H2O +white solid 

 

  



 

B-145 

Tab. 9.42 Solubility in the system KCl-K4Fe(CN)6-H2O at 25°C 

KCl  
[mol/kg] 

K4Fe(CN)6 

[mol/kg] Solid phase 

0.515 0.682 K4Fe(CN)6·3H2O 

1.03 0.523 K4Fe(CN)6·3H2O 

1.54 0.405 K4Fe(CN)6·3H2O 

2.06 0.299 K4Fe(CN)6·3H2O 

2.58 0.239 K4Fe(CN)6·3H2O 

3.11 0.177 K4Fe(CN)6·3H2O 

3.63 0.138 K4Fe(CN)6·3H2O 

4.16 0.106 K4Fe(CN)6·3H2O 

4.68 0.0860 K4Fe(CN)6·3H2O 

4.69 0.0835 K4Fe(CN)6·3H2O + KCl 

Tab. 9.43 Solubility in the system MgCl2-Mg4Fe(CN)6-H2O at 25°C 

Liquid Wet Solid H2O 

[mol.-
%] 

Solid phase 
MgCl2  
[mol/kg] 

Mg2Fe(CN)6 

[mol/kg] 
MgCl2  
[mol.-
%] 

Mg2Fe(CN)6 

[mol.-%] 

0 1.38 0.0% 4.47% 95.5% Mg2Fe(CN)6·11H2O 

0.737 0.941 0.857% 4.50% 94.6% Mg2Fe(CN)6·11H2O 

1.280 0.633 1.43% 3.67% 94.9% Mg2Fe(CN)6·11H2O 

1.841 0.371 1.89% 3.79% 94.3% Mg2Fe(CN)6·11H2O 

2.401 0.195 2.57% 3.35% 94.1% Mg2Fe(CN)6·11H2O 

2.874 0.0112 6.26% 5.14% 88.6% xMgCl2.Mg2Fe(CN)6·yH2O 

3.163 0.00649 5.61% 2.98% 91.4% 3MgCl2.Mg2Fe(CN)6·23H2O 

3.770 0.00146 6.07% 2.65% 91.3% 3MgCl2.Mg2Fe(CN)6·23H2O 

4.226 0.000513 6.33% 1.96% 91.7% 3MgCl2.Mg2Fe(CN)6·23H2O 

4.879 0.000162 6.75% 1.92% 91.3% 3MgCl2.Mg2Fe(CN)6·23H2O 

5.432 0.0000971 7.44% 1.99% 90.6% 3MgCl2.Mg2Fe(CN)6·23H2O 

5.627 0.00216 7.76% 2.11% 90.1% 3MgCl2.Mg2Fe(CN)6·23H2O 

3.778 0.000763 6.66% 1.84% 91.5% 3MgCl2.Mg2Fe(CN)6·23H2O 

4.187 0.000271 6.63% 1.77% 91.6% 3MgCl2.Mg2Fe(CN)6·23H2O 

4.682 0.000108 6.98% 1.99% 91.0% 3MgCl2.Mg2Fe(CN)6·23H2O 

5.137 0.0000415 7.61% 2.09% 90.3% 3MgCl2.Mg2Fe(CN)6·23H2O 

5.723 0.0000553 7.86% 2.14% 90.0% 3MgCl2.Mg2Fe(CN)6·23H2O 
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Tab. 9.44 Solubility in the system NaCl-Na3Fe(CN)6-H2O at 25°C 

Liquid [mol/kg] Wet Solid [mol-%] 

K Na Cl Fe(CN)6 K/ 
(Na+K) 

[mol-%] 

K Na Cl Fe(CN)6 K/ 
(Na+K) 

0.1710 11.42 0 3.865 1.5% 5.8% 32.0% 0.0% 12.6% 15.3% 

0.1132 11.50 0.662 3.651 1.0% 5.9% 35.6% 1.1% 13.5% 14.2% 

0.1730 10.52 1.977 2.904 1.6% 8.3% 31.6% 4.0% 12.0% 20.8% 

0.1917 10.21 2.313 2.697 1.8% 9.9% 29.0% 6.8% 10.7% 25.4% 

0.0885 11.18 2.608 2.886 0.8% 6.6% 36.5% 3.4% 13.3% 15.4% 

0.0988 10.54 3.827 2.269 0.9% 6.8% 36.1% 3.2% 13.2% 15.8% 

0.0912 10.28 4.099 2.090 0.9% 6.9% 37.9% 4.5% 13.5% 15.5% 

0.1560 9.612 4.283 1.828 1.6% 0.1% 47.2% 46.6% 0.2% 0.2%* 

0.1397 8.288 4.715 1.238 1.7% 0.1% 48.9% 48.8% 0.1% 0.1%* 

0.1052 8.229 5.949 0.795 1.3% 0.0% 47.2% 47.1% 0.0% 0.0%* 

0.0297 7.782 6.073 0.580 0.4% 0.0% 30.1% 30.1% 0.0% 0.0%* 

0.0180 7.296 6.748 0.189 0.2% 0.0% 43.0% 42.9% 0.0% 0.0%* 

solid phase: (Na.K)3Fe(CN)6·2H2O or NaCl (*) 

Tab. 9.45 Solubility in the system KCl-K3Fe(CN)6-H2O at 25°C; solid phase: 

K3Fe(CN)6 in all batches 

KCl 

[mol/kg] 

K3Fe(CN)6 

[mol/kg] 

0.502 1.339 

1.001 1.200 

1.504 1.038 

2.002 0.886 

2.502 0.757 

2.998 0.654 

3.502 0.530 

3.999 0.459 

4.499 0.388 
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Tab. 9.46 Solubility in the system MgCl2-Mg3[Fe(CN)6]2-H2O at 25°C; solid phase: 

Mg3[Fe(CN)6]2·11H2O in all batches 

MgCl2  
[mol/kg] 

Mg3[Fe(CN)6]2 

[mol/kg] 

0 0.8782 

0.5886 0.6880 

1.132 0.5324 

1.658 0.3945 

2.217 0.2529 

2.765 0.1400 

3.276 0.06793 

3.692 0.03069 

4.175 0.01141 

4.956 0.005243 

5.405 0.002700 

5.862 0.001835 
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9.5 Spectrophotometric determination of Fe(II) speciation in chloride me-

dia 

9.5.1 Measurements at 25°C 

Tab. 9.47 Speciation of Fe(II) in NaCl solutions at 25°C 

No. NaCl Fe(ClO4)2 HClO4 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 0 0.0500 0.00101 100% 0% 0% 

2 0.00952 0.0499 0.00101 100% 0% 0% 

3 0.0304 0.0496 0.00101 100% 0% 0% 

4 0.0933 0.0500 0.00101 100% 0% 0% 

5 0.307 0.0502 0.00101 100% 0% 0% 

6 0.661 0.0505 0.00102 100% 0% 0% 

7 1.04 0.0508 0.00103 98% 2% 0% 

8 1.41 0.0511 0.00104 98% 2% 0% 

9 1.74 0.0514 0.00105 96% 4% 0% 

10 2.11 0.0517 0.00105 95% 5% 0% 

11 2.46 0.0519 0.00106 93% 7% 0% 

12 2.84 0.0523 0.00107 92% 8% 0% 

13 3.26 0.0526 0.00108 89% 11% 0% 

14 3.62 0.0529 0.00109 87% 13% 0% 

15 4.03 0.0532 0.00110 84% 16% 0% 

16 4.42 0.0535 0.00111 81% 19% 0% 

17 4.86 0.0539 0.00112 78% 22% 0% 

18 5.28 0.0542 0.00113 75% 25% 0% 

19 5.56 0.0544 0.00113 73% 27% 0% 

20 6.07 0.0548 0.00114 67% 33% 0% 
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Tab. 9.48 Speciation of Fe(II) in LiCl solutions at 25°C 

No. LiCl Fe(ClO4)2 HClO4 Mg(ClO4)2 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 2.14 0.0521 0.00105 - 95% 5% 0% 

2 3.18 0.0532 0.00107 - 89% 11% 0% 

3 4.38 0.0544 0.00110 - 81% 19% 0% 

4 5.68 0.0557 0.00113 - 67% 33% 0% 

5 7.00 0.0571 0.00116 - 50% 50% 0% 

6 8.33 0.0584 0.00119 - 28% 72% 0% 

7 9.77 0.0599 0.00122 - 0% 96% 4% 

12 9.71 0.0356 0.00121 0.0153 0% 96% 4% 

13 11.18 0.0335 0.00124 0.0179 0% 85% 15% 

14 14.43 0.0286 0.00131 0.0206 0% 35% 65% 

15 16.07 0.0262 0.00134 0.0267 0% 0% 100% 
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Tab. 9.49 Speciation of Fe(II) in MgCl2 solutions at 25°C 

No. MgCl2 Fe(ClO4)2 HClO4 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 0.207 0.0502 0.000248 100% 0% 0% 

2 0.419 0.0504 0.000247 99% 1% 0% 

3 0.631 0.0507 0.000247 98% 2% 0% 

4 0.846 0.0509 0.000246 96% 4% 0% 

5 1.07 0.0512 0.000246 95% 5% 0% 

6 1.29 0.0514 0.000246 93% 7% 0% 

7 1.52 0.0517 0.000246 90% 10% 0% 

8 1.74 0.0519 0.000247 88% 12% 0% 

9 1.96 0.0521 0.000247 84% 16% 0% 

10 2.20 0.0524 0.000246 81% 19% 0% 

11 2.44 0.0527 0.000247 77% 23% 0% 

12 2.68 0.0529 0.000246 71% 29% 0% 

13 2.91 0.0532 0.000247 65% 35% 0% 

14 3.17 0.0535 0.000247 58% 42% 0% 

15 3.42 0.0538 0.000247 50% 50% 0% 

16 3.66 0.0540 0.000247 42% 58% 0% 

17 3.90 0.0543 0.000246 32% 68% 0% 

18 4.17 0.0546 0.000247 21% 79% 0% 

19 4.43 0.0549 0.000247 8% 91% 0% 

20 4.59 0.0551 0.000245 0% 98% 2% 

 

  



 

B-151 

Tab. 9.50 Speciation of Fe(II) in KCl solutions at 25°C 

No. KCl Fe(ClO4)2 HClO4 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 0.168 0.0497 0.00101 100% 0% 0% 

2 0.416 0.0501 0.00102 99% 1% 0% 

3 0.556 0.0504 0.00102 98% 2% 0% 

4 0.854 0.0509 0.00103 97% 3% 0% 

5 1.15 0.0514 0.00104 96% 4% 0% 

6 1.46 0.0519 0.00105 95% 5% 0% 

7 1.78 0.0524 0.00106 94% 6% 0% 

8 2.09 0.0529 0.00107 92% 8% 0% 

9 2.41 0.0534 0.00108 91% 9% 0% 

10 2.74 0.0540 0.00109 89% 11% 0% 

11 3.07 0.0545 0.00110 87% 13% 0% 

12 3.42 0.0551 0.00111 86% 14% 0% 

13 3.78 0.0557 0.00113 84% 16% 0% 

14 4.12 0.0563 0.00114 82% 18% 0% 

15 4.48 0.0569 0.00115 80% 20% 0% 

16 0.426 0.0502 0.00102 99% 1% 0% 

17 0.561 0.0504 0.00102 98% 2% 0% 
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9.5.2 Measurements at 40°C 

Tab. 9.51 Speciation of Fe(II) in NaCl solutions at 40°C 

No. NaCl Fe(ClO4)2 HClO4 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 0 0.0500 0.00101 100% 0% 0% 

2 0.00952 0.0499 0.00101 100% 0% 0% 

3 0.0304 0.0496 0.00101 100% 0% 0% 

4 0.0933 0.0500 0.00101 100% 0% 0% 

5 0.307 0.0502 0.00101 100% 0% 0% 

6 0.661 0.0505 0.00102 98% 2% 0% 

7 1.04 0.0508 0.00103 96% 4% 0% 

8 1.41 0.0511 0.00104 95% 5% 0% 

9 1.74 0.0514 0.00105 93% 7% 0% 

10 2.11 0.0517 0.00105 91% 9% 0% 

11 2.46 0.0519 0.00106 89% 11% 0% 

12 2.84 0.0523 0.00107 87% 13% 0% 

13 3.26 0.0526 0.00108 85% 15% 0% 

14 3.62 0.0529 0.00109 82% 18% 0% 

15 4.03 0.0532 0.00110 79% 21% 0% 

16 4.42 0.0535 0.00111 76% 24% 0% 

17 4.86 0.0539 0.00112 73% 27% 0% 

18 5.28 0.0542 0.00113 70% 30% 0% 

19 5.56 0.0544 0.00113 67% 33% 0% 

20 6.07 0.0548 0.00114 62% 38% 0% 
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Tab. 9.52 Speciation of Fe(II) in LiCl solutions at 40°C 

No. LiCl Fe(ClO4)2 HClO4 Mg(ClO4)2 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 2.14 0.0521 0.00105 - 92% 8% 0% 

2 3.18 0.0532 0.00107 - 85% 15% 0% 

3 4.38 0.0544 0.00110 - 76% 24% 0% 

4 5.68 0.0557 0.00113 - 63% 37% 0% 

5 7.00 0.0571 0.00116 - 46% 54% 0% 

6 8.33 0.0584 0.00119 - 25% 74% 1% 

7 9.77 0.0599 0.00122 - 0% 94% 6% 

12 9.71 0.0356 0.00121 0.0153 0% 92% 8% 

13 11.18 0.0335 0.00124 0.0179 0% 77% 23% 

14 14.43 0.0286 0.00131 0.0206 0% 24% 76% 

15 16.07 0.0262 0.00134 0.0267 0% 0% 100% 
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Tab. 9.53 Speciation of Fe(II) in MgCl2 solutions at 40°C 

No. MgCl2 Fe(ClO4)2 HClO4 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 0.207 0.0502 0.000248 100% 0% 0% 

2 0.419 0.0504 0.000247 97% 3% 0% 

3 0.631 0.0507 0.000247 96% 4% 0% 

4 0.846 0.0509 0.000246 93% 7% 0% 

5 1.07 0.0512 0.000246 91% 9% 0% 

6 1.29 0.0514 0.000246 89% 11% 0% 

7 1.52 0.0517 0.000246 86% 14% 0% 

8 1.74 0.0519 0.000247 83% 17% 0% 

9 1.96 0.0521 0.000247 79% 21% 0% 

10 2.20 0.0524 0.000246 76% 24% 0% 

11 2.44 0.0527 0.000247 72% 28% 0% 

13 2.91 0.0532 0.000247 61% 39% 0% 

14 3.17 0.0535 0.000247 54% 46% 0% 

15 3.42 0.0538 0.000247 46% 54% 0% 

16 3.66 0.0540 0.000247 38% 62% 0% 

17 3.90 0.0543 0.000246 28% 72% 0% 

18 4.17 0.0546 0.000247 16% 83% 1% 

19 4.43 0.0549 0.000247 3% 94% 3% 

20 4.59 0.0551 0.000245 0% 96% 4% 
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Tab. 9.54 Speciation of Fe(II) in KCl solutions at 40°C 

No. KCl Fe(ClO4)2 HClO4 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 0.168 0.0497 0.00101 100% 0% 0% 

2 0.416 0.0501 0.00102 98% 2% 0% 

3 0.556 0.0504 0.00102 96% 4% 0% 

4 0.854 0.0509 0.00103 95% 5% 0% 

5 1.15 0.0514 0.00104 93% 7% 0% 

6 1.46 0.0519 0.00105 91% 9% 0% 

7 1.78 0.0524 0.00106 90% 10% 0% 

8 2.09 0.0529 0.00107 89% 11% 0% 

9 2.41 0.0534 0.00108 87% 13% 0% 

10 2.74 0.0540 0.00109 85% 15% 0% 

11 3.07 0.0545 0.00110 83% 17% 0% 

12 3.42 0.0551 0.00111 82% 18% 0% 

13 3.78 0.0557 0.00113 79% 21% 0% 

14 4.12 0.0563 0.00114 77% 23% 0% 

15 4.48 0.0569 0.00115 75% 25% 0% 

16 0.426 0.0502 0.00102 97% 3% 0% 

17 0.561 0.0504 0.00102 96% 4% 0% 
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9.5.3 Measurements at 60°C 

Tab. 9.55 Speciation of Fe(II) in NaCl solutions at 60°C 

No. NaCl Fe(ClO4)2 HClO4 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 0 0.0500 0.00101 100% 0% 0% 

2 0.00952 0.0499 0.00101 100% 0% 0% 

3 0.0304 0.0496 0.00101 100% 0% 0% 

5 0.307 0.0502 0.00101 98% 2% 0% 

6 0.661 0.0505 0.00102 96% 4% 0% 

7 1.04 0.0508 0.00103 93% 7% 0% 

8 1.41 0.0511 0.00104 90% 10% 0% 

9 1.74 0.0514 0.00105 89% 11% 0% 

10 2.11 0.0517 0.00105 87% 13% 0% 

11 2.46 0.0519 0.00106 84% 16% 0% 

12 2.84 0.0523 0.00107 82% 18% 0% 

13 3.26 0.0526 0.00108 78% 22% 0% 

14 3.62 0.0529 0.00109 76% 24% 0% 

15 4.03 0.0532 0.00110 73% 27% 0% 

16 4.42 0.0535 0.00111 70% 30% 0% 

17 4.86 0.0539 0.00112 66% 34% 0% 

18 5.28 0.0542 0.00113 63% 37% 0% 

19 5.56 0.0544 0.00113 60% 40% 0% 

20 6.07 0.0548 0.00114 56% 44% 0% 
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Tab. 9.56 Speciation of Fe(II) in LiCl solutions at 60°C 

No. LiCl Fe(ClO4)2 HClO4 Mg(ClO4)2 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 2.14 0.0521 0.00105 - 87% 13% 0% 

2 3.18 0.0532 0.00107 - 79% 21% 0% 

3 4.38 0.0544 0.00110 - 70% 30% 0% 

4 5.68 0.0557 0.00113 - 57% 43% 0% 

5 7.00 0.0571 0.00116 - 42% 58% 1% 

6 8.33 0.0584 0.00119 - 22% 73% 6% 

7 9.77 0.0599 0.00122 - 0% 86% 14% 

12 9.71 0.0356 0.00121 0.0153 0% 80% 20% 

13 11.18 0.0335 0.00124 0.0179 0% 60% 40% 

14 14.43 0.0286 0.00131 0.0206 0% 21% 79% 

15 16.07 0.0262 0.00134 0.0267 0% 2% 98% 
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Tab. 9.57 Speciation of Fe(II) in MgCl2 solutions at 60°C 

No. MgCl2 Fe(ClO4)2 HClO4 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 0.207 0.0502 0.000248 98% 2% 0% 

2 0.419 0.0504 0.000247 95% 5% 0% 

3 0.631 0.0507 0.000247 92% 8% 0% 

4 0.846 0.0509 0.000246 92% 8% 0% 

5 1.07 0.0512 0.000246 87% 13% 0% 

6 1.29 0.0514 0.000246 84% 16% 0% 

7 1.52 0.0517 0.000246 81% 19% 0% 

8 1.74 0.0519 0.000247 78% 22% 0% 

9 1.96 0.0521 0.000247 74% 26% 0% 

10 2.20 0.0524 0.000246 71% 29% 0% 

11 2.44 0.0527 0.000247 66% 34% 0% 

12 2.68 0.0529 0.000246 61% 39% 0% 

13 2.91 0.0532 0.000247 55% 45% 0% 

14 3.17 0.0535 0.000247 48% 51% 0% 

15 3.42 0.0538 0.000247 41% 59% 1% 

16 3.66 0.0540 0.000247 32% 66% 1% 

17 3.90 0.0543 0.000246 23% 74% 2% 

18 4.17 0.0546 0.000247 12% 83% 5% 

19 4.43 0.0549 0.000247 0% 91% 9% 

20 4.59 0.0551 0.000245 0% 90% 10% 
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Tab. 9.58 Speciation of Fe(II) in KCl solutions at 60°C 

No. KCl Fe(ClO4)2 HClO4 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 0.168 0.0497 0.00101 97% 3% 0% 

2 0.416 0.0501 0.00102 96% 4% 0% 

3 0.556 0.0504 0.00102 93% 7% 0% 

4 0.854 0.0509 0.00103 91% 9% 0% 

5 1.15 0.0514 0.00104 89% 11% 0% 

6 1.46 0.0519 0.00105 88% 12% 0% 

7 1.78 0.0524 0.00106 85% 15% 0% 

8 2.09 0.0529 0.00107 85% 15% 0% 

9 2.41 0.0534 0.00108 83% 17% 0% 

10 2.74 0.0540 0.00109 82% 18% 0% 

11 3.07 0.0545 0.00110 78% 22% 0% 

12 3.42 0.0551 0.00111 76% 24% 0% 

13 3.78 0.0557 0.00113 73% 27% 0% 

14 4.12 0.0563 0.00114 71% 29% 0% 

15 4.48 0.0569 0.00115 69% 31% 0% 

16 0.426 0.0502 0.00102 94% 6% 0% 

17 0.561 0.0504 0.00102 93% 7% 0% 
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9.5.4 Measurements at 80°C 

Tab. 9.59 Speciation of Fe(II) in NaCl solutions at 80°C 

No. NaCl Fe(ClO4)2 HClO4 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 0 0.0500 0.00101 97% 3% 0% 

2 0.00952 0.0499 0.00101 96% 4% 0% 

4 0.0933 0.0500 0.00101 93% 7% 0% 

5 0.307 0.0502 0.00101 90% 10% 0% 

6 0.661 0.0505 0.00102 87% 13% 0% 

7 1.04 0.0508 0.00103 83% 17% 0% 

8 1.41 0.0511 0.00104 81% 19% 0% 

9 1.74 0.0514 0.00105 80% 20% 0% 

10 2.11 0.0517 0.00105 77% 23% 0% 

11 2.46 0.0519 0.00106 74% 26% 0% 

12 2.84 0.0523 0.00107 72% 28% 0% 

13 3.26 0.0526 0.00108 68% 32% 1% 

14 3.62 0.0529 0.00109 65% 34% 1% 

15 4.03 0.0532 0.00110 62% 37% 1% 

16 4.42 0.0535 0.00111 59% 40% 1% 

17 4.86 0.0539 0.00112 55% 44% 1% 

18 5.28 0.0542 0.00113 51% 47% 2% 

19 5.56 0.0544 0.00113 49% 49% 2% 

20 6.07 0.0548 0.00114 44% 54% 2% 
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Tab. 9.60 Speciation of Fe(II) in LiCl solutions at 80°C 

No. LiCl Fe(ClO4)2 HClO4 Mg(ClO4)2 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 2.14 0.0521 0.00105 - 78% 22% 0% 

2 3.18 0.0532 0.00107 - 69% 31% 0% 

3 4.38 0.0544 0.00110 - 59% 40% 1% 

4 5.68 0.0557 0.00113 - 46% 52% 2% 

5 7.00 0.0571 0.00116 - 31% 63% 5% 

6 8.33 0.0584 0.00119 - 10% 76% 14% 

12 9.71 0.0356 0.00121 0.0153 0% 68% 32% 

13 11.18 0.0335 0.00124 0.0179 0% 50% 50% 

14 14.43 0.0286 0.00131 0.0206 0% 26% 74% 

15 16.07 0.0262 0.00134 0.0267 0% 26% 74% 
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Tab. 9.61 Speciation of Fe(II) in MgCl2 solutions at 80°C 

No. MgCl2 Fe(ClO4)2 HClO4 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 0.207 0.0502 0.000248 89% 11% 0% 

2 0.419 0.0504 0.000247 85% 15% 0% 

3 0.631 0.0507 0.000247 83% 17% 0% 

5 1.07 0.0512 0.000246 79% 21% 0% 

6 1.29 0.0514 0.000246 75% 25% 0% 

7 1.52 0.0517 0.000246 73% 26% 0% 

8 1.74 0.0519 0.000247 68% 32% 1% 

9 1.96 0.0521 0.000247 64% 35% 1% 

10 2.20 0.0524 0.000246 61% 38% 1% 

11 2.44 0.0527 0.000247 55% 43% 1% 

12 2.68 0.0529 0.000246 50% 48% 2% 

13 2.91 0.0532 0.000247 44% 54% 2% 

14 3.17 0.0535 0.000247 38% 59% 4% 

15 3.42 0.0538 0.000247 30% 65% 5% 

16 3.66 0.0540 0.000247 23% 70% 8% 

17 3.90 0.0543 0.000246 12% 78% 10% 

18 4.17 0.0546 0.000247 1% 84% 15% 

21 3.66 0.0296 0.00110 23% 70% 7% 

22 3.92 0.0281 0.00111 13% 77% 10% 

23 4.18 0.0267 0.00112 6% 81% 14% 

24 4.44 0.0252 0.00113 0% 81% 19% 

25 4.60 0.0243 0.00113 0% 78% 22% 
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Tab. 9.62 Speciation of Fe(II) in KCl solutions at 80°C 

No. KCl Fe(ClO4)2 HClO4 Fe2+ FeCl+ FeCl2(aq) 

 [mol/kg] [mol/kg] [mol/kg] [%] [%] [%] 

1 0.168 0.0497 0.00101 89% 11% 0% 

2 0.416 0.0501 0.00102 89% 11% 0% 

3 0.556 0.0504 0.00102 85% 15% 0% 

4 0.854 0.0509 0.00103 83% 17% 0% 

5 1.15 0.0514 0.00104 81% 19% 0% 

6 1.46 0.0519 0.00105 79% 21% 0% 

7 1.78 0.0524 0.00106 77% 23% 0% 

8 2.09 0.0529 0.00107 76% 24% 0% 

9 2.41 0.0534 0.00108 74% 26% 0% 

10 2.74 0.0540 0.00109 67% 33% 0% 

11 3.07 0.0545 0.00110 66% 34% 0% 

12 3.42 0.0551 0.00111 63% 37% 0% 

13 3.78 0.0557 0.00113 61% 39% 0% 

14 4.12 0.0563 0.00114 58% 41% 1% 

15 4.48 0.0569 0.00115 86% 14% 0% 

16 0.426 0.0502 0.00102 85% 15% 0% 

17 0.561 0.0504 0.00102 89% 11% 0% 
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Der von PSI-LES an KIT-INE übermittelte Bericht zu den durchgeführten Arbeiten 

innerhalb von ThermAc (inklusive der Verlängerungsphase) ist nachfolgend dargestellt. 
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ThermAc project final report 
PSI contribution 

G. D. Miron1, D. A. Kulik1, T. Thoenen1 

1 Paul Scherrer Institut, LES, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland 

Summary 

ThermAc is a joint project ("Verbundprojekt") on aquatic actinide chemistry and thermodynamics at 

elevated temperature conditions financed by the German Federal Ministry of Education and Research 

that started in March 2015 and ended in April 2020. The general objective of the ThermAc project was 

to extend the chemical understanding and available thermodynamic database for actinides, long-lived 

fission products and relevant matrix elements in aquatic systems to elevated temperatures (using a 

combination of experiments, estimation methods, and quantum chemical calculations). 

The contribution of PSI LES (Laboratory for Waste Management) to ThermAc consists of two 

complementary parts: 

1. Evaluation and systematic application of the isocoulombic estimation method for the 

extrapolation of equilibrium constants to higher temperatures. 

2. Revision and extension of the existing PMATCHC software for the management of internally 

consistent thermodynamic datasets. 

Work at LES was centered mainly on the application and testing of the isocoulombic estimation method 

for the solid solution – aqueous solution system (Ba, Sr, Ra)SO4(s)–H2O(l); on validating the applicability 

of various alternative isocoulombic reactions to estimate log𝐾𝑇
°  values of aqueous complexation 

reactions for lanthanides and actinides to elevated temperatures; and on the development of parts of a 

ThermoEcos integrated software framework for managing, estimating, and calculating thermodynamic 

data as a function of pressure and temperature: the C++ library ThermoFun for temperature corrections 

of thermodynamic data, the ThermoHub database for storing thermodynamic data, and the 

ThermoMatch code for managing thermodynamic data in the database and in exported files. 

In the first part of the report, we present an overview of the development of the software tools and 

their main functionality and applications. In the second part, we present a systematic evaluation of the 

use of isocoulombic reactions for extrapolating equilibrium constants to higher temperatures with focus 

on actinides and lanthanides complexation. This was greatly simplified and accelerated using the 

dedicated software and database for fast and accurate generation of reactions and calculation of their 

effects. 
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1. Software for managing thermodynamic data 

The reliability of results of (geo)chemical modeling largely depends on the flexibility, accuracy and 

consistency of thermodynamic models and their input data. Alternative chemical thermodynamic 

databases exist for various areas of application (aquatic systems, petrology, cement, waste), but they 

cannot be easily compared or combined. This situation calls for the creation of automated tools and 

workflows to generate and maintain internally consistent thermodynamic datasets. 

The ThermoEcos ecosystem is an open-source framework under continuous development, consisting of 

code tools and databases for storing, managing, processing, and delivering thermodynamic data. It 

provides users and modeling codes with a unified access to thermodynamic data. Tools for which 

development started within the ThermAc prject are (Figure 1): (1) ThermoHub database server which 

provides efficient and traceable storage and management of thermodynamic data; (2) ThermoMatch 

client and code (formerly called PMATCHC and later PMATCH++) for editing, managing, importing and 

exporting thermodynamic data stored in ThermoHub and thermodynamic data conversions between 

substances and reactions; (3) ThermoFun, a C++ library for retrieving standard state thermodynamic 

properties of chemical substances and reactions from the ThermoHub database, with conversion from 

reference temperature (298.15 K) and pressure (1 bar = 105 Pa) to the temperature and pressure of 

interest. 

Software development was carried out by G.D. Miron (and D. Kulik as software architect) in close 

collaboration with our IT consultant Svitlana V. Dmytrieva (Cosylab) who was funded by ThermAc. The 

ThermoHub server was set up and is maintained by Congineer GmbH Switzerland as in-kind 

contribution. Work on these software tools has started during the ThermAc project, but their 

development continues and is foreseen to continue in future projects.  

 

Figure 1. Data-centric integration of the software tools and codes developed in the ThermAc project. Arrows show 
the directions of data flow. More details can be found at https://thermohub.org.  
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1.1. ThermoHub 

ThermoHub is a database server hub multi-format database for storing various types of thermodynamic 

data and thermodynamic datasets. It uses a flexible JSON format that allows the storage of structured, 

hierarchical, and often incomplete thermodynamic and other chemical data. ThermoHub employs a 

property graph database allowing for complete traceability of the data using graph links between data 

source documents (references) and any data field in stored data documents. A graph layer can be 

independently added on top of the individual data types, representing different links between records 

(e.g. links to data source records). 

The ThermoHub property graph database (Kulik, Miron, Thoenen, in preparation) consists of two types 

of structured data objects: 

 Vertices (or nodes): Contain data as nested JSON documents 

 Edges (or links): Connect two vertices, are directed (inbound or outbound) and contain data as 

key-value pairs 
 

Vertices “know” nothing about the edges; any number of edges of the same or different types can be 

connected to a vertex. Each vertex has at least one inbound or outbound edge (no isolated vertices). 

Thermodynamic entities such as reactions, interaction parameters, phases, LMA reaction sets, GEM 

thermodynamic data sets, or data source references can all be represented, traversed, extracted and 

processed as property graphs created in the graph database after importing/adding the data as vertices.  

 

 

Figure 2. Representation of the chemical reaction HCO3
- + H+ ⇌ CO2(g) + H2O(l) as a property graph. 
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Figure 2 shows how chemical reactions are represented in a property graph, taking the reaction 

HCO3
- + H+ ⇌ CO2(g) + H2O(l) 

as an example, for which three types of vertices can be distinguished:  

 substance vertex: Contains thermodynamic data such as ∆fG˚, ∆fH˚, S˚, Cp˚, V˚, etc. for a specific 

aqueous species, liquid, gas, or solid substance 

 reaction vertex: Contains thermodynamic data such as log K˚, ∆rG˚, ∆rH˚, ∆rS˚, ∆rCp˚, ∆rV˚, etc. for 

a specific reaction among different substances 

 datasource vertex: Contains bibliographic data for a specific datasource or reference 

The reaction involves four types of edges, the directions of which represent the flow of information: 

 “takes” edge: Connects the vertex of a substance involved in a reaction with the corresponding 

reaction vertex, the “takes” edge contains the stoichiometric coefficient of the substance in the 

reaction (negative for reactants, positive for products and zero for catalysts) 

 “defines” edge: Connects the reaction vertex with the vertex of a substance whose 

thermodynamic properties are defined by those of the reaction and the other substances involved 

in the reaction, information on which properties are defined are contained in the edge 

 “inherits” edge: Connects a reaction (or substance) vertex with another reaction or (substance) 

which inherits one or more thermodynamic properties from the first reaction (or substance), e.g., 

thermodynamic data for americium species are often "inherited" from the corresponding curium 

species 

 “citing” edge: Connects a datasource vertex with a reaction or substance vertex which contains 

data from that datasource. Information on the referenced data is stored in the edge 

This property graph structure is convenient for the automatic generation of isocoulombic reactions 

among specific substances to extrapolate equilibrium constants to higher temperatures (see Section 

1.2.3). 

Several other data structures are in use in ThermoHub. These are needed to describe the 

thermodynamic data of a solution phase such as the vertex types: Phase (data for phases), 

InteractionModel (data for solution models) and Interaction (data for interactions between different 

substances).  

An important data structure of vertex type is the ThermoDataSet which is a collection of thermodynamic 

data for substances and/or reactions linked through edges to the ThermoDataSet vertex. This entity 

defines what researchers would refer to as a thermodynamic database (e.g. slop98, PSI/Nagra 

database). Several ThermoDataSets (well-known thermodynamic databases) are already available in 

ThermoHub (Table 1), and several others will be uploaded. New ThermoDataSets can be put together by 

thermodynamic database experts in GEM (Gibbs energy based) or LMA (reaction based) formats.  
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Table 1. Currently available ready to use ThermoDataSets in the remote ThermoHub server. The database is 
periodically extended with new ThermoDataSets. 

Database (references) Application field 

psinagra-12-07 (Hummel et al., 2002; Thoenen et 
al., 2014) 

radioactive waste disposal 

slop98-inorganic and slop98-organic (Shock et al., 
1997; Sverjensky et al., 1997) 

aqueous geothermal systems (revised SUPCRT92) 

cemdata18 (Lothenbach et al., 2019) suitable for cement systems 

Heracles (PSI Heracles) modeling of U and fission products 

mines16 (https://geoinfo.nmt.edu/tdb/) modeling magmatic-hydrothermal ore forming 
processes 

aq17 (Miron et al., 2017) modeling fluid rock interaction at hydrothermal 
conditions (major elements) 

slop16 (GEOPIG) aqueous geothermal systems (organic and 
inorganic, updated to slop98) 

 

1.2. ThermoMatch 

ThermoHub data can be managed using the ThermoMatch graphical user interface (GUI) client module. 

ThermoMatch provides various methods for maintaining, editing, importing and backing up data, as well 

as functionality to define and keep scripts for importing/exporting thermodynamic databases from/to 

foreign format files (e.g. slop.dat, phreeqc, json-thereda, csv, etc.). ThermoMatch is also a platform for 

consistency checks, and it provides simple data aggregation tools for the automatic generation of 

reactions and particularly of isocoulombic reactions. These applications allow fast and easy conversion 

of substance-based datasets (for GEM - Gibbs Energy Minimization) into reaction-based databases (for 

LMA - Law of Mass action codes), and help investigating the extrapolation capabilities of isocoulombic 

reactions. Workflows for consistency checks can be developed for performing checks within a 

thermodynamic dataset (e.g. properties consistent with thermodynamic relationships) or between 

datasets (e.g. consistency of the reaction properties with those of reactants from different databases).  

ThermoMatch can be used to: 

 Create, read, update, and delete (CRUD) operations for maintaining the ThermoHub database. 

 Import 3rd party thermodynamic databases from foreign format files (e.g. slop.dat, phreeqc, 

json, csv, etc.), and extending existing ones with new substances and reactions. 

 Generate LMA (Law of Mass Action) reaction-based style databases from substance-based GEM 

(Gibbs Energy Minimization) style databases using the automatic reaction generator module. 

 Combine reactions into isocoulombic/isoelectric reactions, useful for extrapolating reaction 

properties at elevated temperatures when no or little experimental data is available. 
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1.2.1. Import/Export 

An important step in developing the new framework for managing thermodynamic data was to import 

the available data for chemical elements and substances from various existing (exported) formats into 

the new ThermoHub database. ThermoMatch uses the JsonIO and JsonUI libraries for managing 

structured data, allowing the import of thermodynamic data from “foreign” file types (e.g., text, JSON, 

YAML, XML) and formats (e.g. key-value, tabulated data, structured data).  

To import data from “foreign” files into the data object model (DOM - describes the structure of the 

stored data in the database), it is necessary to create a format description file. This file contains a list of 

matches that connect the data blocks from the imported file with the place in the DOM where this data 

should be stored. The format file can be created and edited in a JsonUI data widget (Figure 3) or with a 

text editor and saved in a JSON file or in the database. Having such a format files makes it easy and 

efficient to automatically import thermodynamic data stored in different formats, opening the way for 

ThermoMatch and ThermoHub to become a “universal hub” for retrieving, storing, importing, exporting 

and managing thermodynamic data. 

Several import scripts for database files of major geochemical software tools are used in ThermoMatch 

to import from formats such as: csv (table format exported from excel), slop (SUPCRT), json-thereda, 

GEM-Selektor, phreeqc, etc.  

This is essential for accessing various sources of thermodynamic data and storing them in one place. This 

makes it easier to compare different databases or to evaluate different temperature and pressure 

correction methods and extrapolation methods such as using isocoulombic reactions. 
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Figure 3. Import script in JsonUI widgets describing the foreign format, matching the fields from the foreign format 
(e.g. “Z”) with the path in the ThermoHub data structure (e.g. “properties.formula_charge”).  

 

The data present in the ThermoHub database can also be exported into many other formats. The 

simplest possibility is to export the selected data or a ThermoDataSet into a table format or a simplified 

JSON format that contains only the fields that are important for the user or for a specific application 

(e.g. ready for publication table with thermodynamic data for selected substances). More complex 

export functionality and scripts are available for exporting data into foreign formats of widely used 

geochemical modeling software (e.g. GEM-Selektor and phreeqc, Figure 4).  

The import/export capability of ThermoMatch can be easily extended to accommodate many other 

foreign formats.  

 

 

Figure 4. Export widget for producing phreeqc.dat database files. Different sections from the phreeqc database (1st 
column) are connected with data types present from ThermoHub (second column). 

  

1.2.2. Algorithm for generating reactions 

An algorithm for generating reactions was developed in ThermoMatch and can be used through the 

reaction generator widget. The algorithm uses the Chemical Reaction Stoichiometry (CRS) method 

(Missen and Smith, 1998) to generate a set of reactions for product species in terms of master species. 

We can consider a system with M elements and N substances (M master species, N-M product species). 

For example: C, O, H, (e-) as elements and HCO3
-, OH-, H+, CO3

2-, CO2(aq) as substances with HCO3
-, OH-, H+ 

selected as masters species. We write the formula matrix A (M rows, N columns), in which each column 
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represents the ordered elemental composition of a substance (formula vector) (Table 2). Using row 

operations (addition/subtraction) and column interchange (if necessary), a unit matrix is created in the 

upper left part of matrix A. For our simple example, we perform the following matrix operations:  

row(3) – row(2) 

row(2) – 3*row(1) 

row(3) + 2*row(1) 

row(4) – row(1) – row(2) + row(3)  

These operations lead to A*, the unit matrix form of A (Table 3). Each column to the right of the unit 

matrix in A* contains the stoichiometric coefficients of the reaction leading to the respective product 

species (column header). In our example, the last two columns in A* are the desired reactions: 

HCO3
- - H+ = CO3

2- 

HCO3
- -OH- = CO2(aq) 

Table 2. Formula matrix A. 

 
HCO3

- OH
- 

H
+ 

CO3
2- CO2(aq) 

C 1 0 0 1 1 

O 3 1 0 3 2 

H 1 1 1 0 0 

e- -1 -1 1 -2 0 

Table 3. Reaction matrix A* (row-reduced form of A) 

 

HCO3
- OH- H+ CO3

2- CO2(aq) 

HCO3
- 1 0 0 1 1 

OH- 0 1 0 0 -1 

H+ 0 0 1 -1 0 

e- 0 0 0 0 0 

 

The system in the above example can be described using 3 master species and 2 independent reactions, 

while the electron does not have to be explicitly defined.  

The “row-reduce” algorithm described by (Missen and Smith, 1998) was also implemented in the 

reaction generator module. The reaction generator module is operated via a simple graphical widget. 

After selecting the source thermodynamic dataset (e.g. PSI/Nagra database, (Hummel et al., 2002; 
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Thoenen et al., 2014)) and the chemical elements of the chemical system to be considered, a list of all 

feasible species is produced, and the user may choose the desired master species (‘M’) from the list. 

With a mouse click, the list of reactions is then generated for all remaining product (dependent, ‘D’) 

species (Figure 5). The generated reactions can then be saved in the database. This allows the user to 

generate various types of reactions that can be later combined into isocoulombic reactions (see section 

1.2.3), and to further investigate how their properties can be more accurately extrapolated to different 

conditions (e.g. at different temperatures, see section 2).  

 

 

 Figure 5. The ReactionSet generator widget.  

 

Application: generating an LMA database from GEMS dataset  

One important application of the reaction generator is to use it for creating LMA type reaction sets out 

of GEM type databases that contain standard thermodynamic data for substances, but not for reactions 

between them. This operation was automated by extending and using the ThermoMatch, our new 

innovative tool for managing TDBs both for substances (GEM format) and reactions (LMA format).  

For example, the new Cemdata18 thermodynamic database (TDB) was developed for the GEM (Gibbs 

Energy Minimization) format, which includes standard-state thermodynamic properties of cement-

relevant substances and some aqueous complexes. Details on the development of Cemdata18 can be 

found in (Lothenbach et al., 2019). 

The database was imported into ThermoMatch using an import script from the GEM-Selektor foreign 

format. For generating the LMA style reactions for product species, the following aqueous “master” 

species were selected, based on their generic predominance: Ca+2, Mg+2, Sr+2, Na+, K+, H+, CO3
-2, SO4

-2, Cl-, 

NO3
-, AlO2

-, FeO2
-, SiO2

0, H2O0. For all the “product” species in the Cemdata18 database, the formation 

reactions were automatically generated, and their standard properties at 25 °C and 1 bar were 

calculated. The generated reactions were then saved as an LMA type ThermoDataSet and then exported 

into a PHREEQC *.dat file using an export script developed for this purpose (Lothenbach et al., 2019; 

Miron et al., 2018). This provided the PHREEQC modeler community with the latest development 
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related to the thermodynamics of cementitious materials. It also shows the potential of innovative tools 

such as ThermoMatch for supplying relevant TDBs of improved quality and consistency in various 

formats in a semi-automatic, less error-prone way, to embrace as broad circles of specialists as possible. 

1.2.3. Algorithm for generating isocoulombic/isoelectric reactions 

An isocoulombic reaction has the same number and type of charged species on both sides of the 

reaction while for an isoelectric reaction the total amount of charge (positive or negative) of the 

reactants is equal to the total amount of charge of the products (see section 2). Therefore, the 

isocoulombic reactions are a subset of the set of isoelectric reactions.  

Isocoulombic and isoelectric reactions can be created by linear combination of non-isocoulombic 

reactions. For example, two reactions that have the same charge pattern (map) can be linearly 

combined into an isocoulombic reaction (Simmler, 2012):  

 Reaction Charge pattern 
{“charge type”: coefficient} 

    (1) UO2
+2 + CO3

-2 = UO2CO3(aq) {“+2”: -1, “-2”: -1} 

+ (2) CaCO3(cr) = Ca+2 + CO3
-2 {“+2”: 1, “-2”: 1} 

 CaCO3(cr) + UO2
+2 + CO3

-2 = Ca+2 + UO2CO3(aq) + CO3
-2 {“+2”: 0, “-2”: 0} 

 CaCO3(cr) + UO2
+2 = Ca+2 + UO2CO3(aq) {“+2”: 0} 

 

Using the principle of reaction charge pattern, an algorithm that generates all possible isocoulombic 

reactions from a list of reactions for two or more combinations was developed (Miron, Kulik, Thoenen, 

in preparation). The list of reactions is separated into two groups: the investigated reactions (i.e. the 

reactions to be made isocoulombic), and the model reactions (the reactions that are combined with the 

investigated ones to produce isocoulombic reactions). For each investigated reaction, the algorithm 

starts a recursive loop through all the model reactions and looks in the charge pattern for a charge in the 

model reaction that can cancel out a charge present in the investigated reaction. This allows to test all 

possible combinations with one or more model reactions for each investigated reaction. At the end, only 

the resulting combined reactions that have all their charges in the charge pattern with zero coefficient 

are kept as isocoulombic reactions.  

An additional module implemented in ThermoMatch is the Isocoulombic Reaction Generator, aimed at 

compiling all possible reactions with the same-charge species on both sides. This module is useful for 

performing systematic investigations into using isocoulombic reactions to predict their standard 

thermodynamic properties at elevated temperatures, where little or no experimental data are available 

(see section 2). The module comes as a graphical widget, where the user can select a list of reactions to 

be investigated and a list of model reactions, and generate all possible isocoulombic reactions (Figure 6).  

With the use of the ThermoFun library, the standard properties of isocoulombic reactions are calculated 

at elevated temperatures using one-term, two-term or van’t Hoff, and three-term extrapolations (see 

Appendix A). The properties of model reactions are also calculated using ThermoFun, based on the 

methods and their respective coefficients set in their database records or based on the properties of the 
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reactants that take part in the reactions. Predicted effects of the investigated reaction are retrieved at 

each temperature and pressure point from the calculated properties of the model reaction and from 

those of the isocoulombic reaction. In addition, the properties of the reaction defined species present in 

the isocoulombic reaction are also calculated from the properties of the isocoulombic reaction and the 

rest of the reactants participating in the reaction (provided that their properties and a method for 

extrapolating them is defined). The predictions from the generated isocoulombic reactions can then be 

plotted, and their quality can be checked within desired temperature and pressure intervals. 

 

 

Figure 6. Isocoulombic reaction generator widget. 

1.3. ThermoFun 

ThermoFun (Thermodynamic Functions) is a universal open-source client that delivers thermodynamic 

properties of substances and reactions at temperature and pressure of interest. ThermoFun solves the 

problem of having hard-coded methods or databases specific to one modeling code by separating the 

input data, the EoS parameters, and the thermodynamic functions, and delivering the thermodynamic 

data to any C/C++ or Python code, in principle.  

The ThermoFun library contains a collection of models and Equations of State (EoS) for temperature-

pressure corrections of standard thermodynamic functions for: solid, aqueous, gaseous, and melt 

components (see Table 4 for current implementations).  

The code architecture was developed such that new thermodynamic functions and methods can be 

implemented as modules or “slots”, thus making it possible at any time to extend the library with 

additional thermodynamic methods or equations of state developed in the future.  

ThermoFun can automatically pull the required standard thermodynamic data from the remote 

ThermoHub server, or from the user-provided local JSON files. These data represent records of 

substances and reactions containing reference thermodynamic properties and assigned T-P correction 

methods with their respective coefficients, that are connected through property graph links to a 

thermodynamic dataset (ThermoDataSet), see section 1.1.  
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ThermoFun has two main modes of calculating standard molar properties of substances and reactions. 

This depends on the available data and the existing relations between the substance and reaction 

records in the database.  

The first and default calculation mode allows to use the method that is specified in the respective 

substance or reaction record (e.g. the record Ca2+ can have the T-P correction method specified as 

“HKF”) to perform temperature and pressure corrections to the standard state properties.  

The second calculation mode uses the graph links between the records in the database. For example, 

the properties of a reaction can be calculated from the properties of all reactants participating in the 

reaction, which, in turn, are corrected for temperature and pressure with their own specified correction 

method. The properties of a substance can also be calculated from the properties of a reaction and the 

properties of all other reactants participating in the reaction. Such a substance is linked to a reaction 

through an edge of type “defines” that signifies that its properties are defined by the linked reaction. 

More complex combinations are possible with records that have their properties calculated using their 

own methods and others using the assigned graph links. To do this, ThermoFun uses a recursive 

algorithm that starts from the deepest level, where the properties of all records can be independently 

calculated, and travels through the graph up to the selected record (Miron, Kulik, Leal, Thoenen, in 

prep.).  

The library can be used by third-party codes (written in C++ or Python) that require standard state 

thermodynamic properties in calculations (e.g. equilibrium solvers, phase diagram plotters). This is 

possible through the C++ or Python application programming interface (API) of ThermoFun, which can 

be used for single or batch calculations (Figure 7).  

ThermoFun uses the automatic differentiation scheme developed in Reaktoro (http://reaktoro.org) for 

some of the implemented models. This means that, besides the calculated values of the respective 

thermodynamic properties, the library API can provide their first- and second-order derivatives with 

respect to temperature and pressure. This can significantly accelerate calculations of geochemical 

equilibria using the Reaktoro GEM and LMA algorithms (Leal et al., 2017, 2016). In addition, the 

automatic differentiation is used in ThermoFun to compute the error propagation from the input 

reference properties through the T and P correction method to the calculated properties at the desired 

T and P.  

For fast investigation, tabulation, or examination of thermodynamic data, ThermoFun offers the 

possibility of using a graphical widget (ThermoFunGUI) for tabulating thermodynamic properties of 

substances.  Using the widget, the user can select a desired thermodynamic dataset (ThermoDataSet), 

filter the data by chemical elements, select a list of substances or reactions, define a list of T and P 

points, and select standard thermodynamic properties to be calculated (Figure 8). Results are written 

into a comma-separated values (CSV) file that can be viewed and plotted using the ”Results” button, or 

imported into any commercial spreadsheet software. 
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Figure 7. Example of using the ThermoFun library to calculate the thermodynamic properties of a substance (A) 
using the ThermoEngine (API) or doing batch calculations for a list of substances at several P and T (B) using the 
ThermoBatch (API). 

 

 

Figure 8. ThermoFunGUI with selected reactions, selected properties to calculate and T-P points list.  

A 

B 
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1.3.1. Methods and EoS 

In ThermoFun, several popular Equations of State (EOS) and temperature and pressure correction 

models for substances are implemented (Table 4). These include the IAWPS95 (Wagner and Pruß, 2002) 

and ZHANG AND DUAN (2005) EOS for water. The latter, together with the newly implemented model 

for calculating the dielectric properties of H2O and the revised HKF model (Sverjensky et al., 2014) allows 

for calculating the properties of aqueous ions and complexes at pressures beyond the previous 5 kbar 

limit of the HKF model (Tanger and Helgeson, 1988). The library allows different combinations of the 

available models for correcting the standard state thermodynamic properties. For example, it is possible 

to combine the standard state properties of H2O calculated with the IAWPS95 EOS, the dielectric 

permittivity calculated using the empirical fit of Sverjensky et al. (2014), and the revised parameters for 

the HKF model (Sverjensky et al., 2014), to calculate the reference properties of ions and aqueous 

species at a given temperature and pressure.  

 

Table 4. Methods and equations of state (EOS) currently implemented in ThermoFun 

Substances Reactions 

Heat Capacity integration Cp = f(T) ΔrCp = f(T); ΔrG = f(T); logK = f(T); ΔrV = f(T);  

Molar volume integration V = f(P,T) Marshall-Franck density model, (Marshall and 
Franck, 1983; Mesmer et al., 1991) 

Birch-Murnaghan, Cp and V integration (Birch, 1947; Holland 
and Powell, 1998; Murnaghan, 1944) 

Modified Ryzhenko-Bryzgalin (MRB) model 
(Ryzhenko et al., 1985) 

Helgeson-Kirkham-Flowers (HKF) (Tanger and Helgeson, 1988) Dolejs-Manning density model (Dolejš and 
Manning, 2010) 

Akinfiev-Diamond  (Akinfiev and Diamond, 2003) 
nonelectrolyte model 

Temperature extrapolations 

 

Churakov-Gottschalk fluid EoS (Churakov and Gottschalk, 2003) One term (logK = const. when ΔrH = 0) 

Peng-Robinson fluid EoS (Peng and Robinson, 1976) One term (ΔrH = ΔrG const. when ΔrS = 0) 

Peng-Robinson-Stryjek-Vera fluid EoS (Stryjek and Vera, 1986) Two term (Van’t Hoff, ΔrCp = 0) 

Compensated Redlich-Kwong fluid EoS (Holland and Powell, 
1991; Redlich and Kwong, 1949) 

Three term (ΔrCp = const.) 

Soave-Redlich-Kwong fluid EoS (Soave, 1972)  

Holland and Powell (1998) density model for aqueous species  

Anderson (1991) density model for aqueous species  

H2O EoS H2O Dielectric constant 

Haar-Gallagher-Kell (Haar et al., 1984) Johnson and Norton (1992) 

IAPWS Formulation (1995) (Wagner and Pruß, 2002) Fernandez et al. (1997) 

Zhang & Duan (Zhang and Duan, 2005) Sverjensky et al. (2014) 
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For calculating the properties of reactions, extrapolation methods such as one-, two-, and three-term 

extrapolations are available. In addition, the properties of reactions can also be calculated as a function 

of temperature and pressure using a density model, provided the model coefficients for the desired 

reaction are available. Density models describe the change in log𝐾𝑇𝑃
°  as a function of the water solvent 

density.  

All these methods are based on different physical concepts and have a certain range of applicability and 

accuracy. ThermoFun makes it possible to test their performance against each other, against other 

estimation methods such as using isocoulombic reactions, or use them to calculate the properties of 

model reactions used to construct isocoulombic reactions.  

Application: Impact of using different thermodynamic and electrostatic models on the calculated 

properties of solutes with the HKF EoS 

The Helgeson-Kirkham-Flowers (HKF) equation of state (EoS) model (Tanger and Helgeson, 1988) is 

extensively used in geochemistry to calculate standard state thermodynamic properties of aqueous ions 

and complexes in wide ranges of temperature and pressure. The HKF EoS uses the dielectric constant of 

the solvent which is formulated as a function of the solvent density. Several models for calculating 

thermodynamic and electrostatic properties of water have been developed (Dolejš, 2013; Miron et al., 

2019). Existing implementations of the HKF EoS largely come with hardcoded models for water solvent 

properties, making it difficult to use different and more recent formulations for calculating water solvent 

properties. Due to its modular structure, ThermoFun library makes it easy to use any combination of EoS 

and methods for calculating the standard state thermodynamic properties of solutes and solvents.  

This aspect was used by (Miron et al., 2019) to test the performance of commonly used thermodynamic 

and electrostatic models and asses the discrepancies in the calculated water solvent properties, and its 

derivatives, in the framework of the Helgeson-Kirkham-Flowers model. The results of the investigation 

showed that there is a good agreement between the investigated models for calculating the volumetric 

properties of water, with discrepancies not exceeding 0.2 log units for reactions (Figure 9 A). On the 

other hand, models for calculating the dielectric constant produce increasingly different values above 

500 °C, which can lead to discrepancies larger than 2 log units (Figure 9 B). This will have an impact 

when modeling magmatic-hydrothermal systems or when using the HKF model to retrieve standard 

state data from solubility experiments at elevated temperatures (the uncertainity in the calculated 

dielectric constant will be propagated to the standard state properties).  
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Figure 9. Differences in logK values of the water dissociation reaction, obtained from: (A) different thermodynamic 
models for calculating water volumetric properties, full lines -- difference between IAPWS95 (Wagner and Pruß, 
2002) and HGK84 (Haar et al., 1984), and dashed lines -- between IAPWS95 and ZD05 (Zhang and Duan, 2005); (B) 
different models for calculating water dielectric properties, full lines -- difference between JN91(Johnson and 
Norton, 1991) and SV14 (Sverjensky et al., 2014), and dashed lines -- between JN91 and FE97, using IAPWS95 for 
water volumetric properties. 

2. Isocoulombic estimations 

2.1 Motivation 

A large part of the thermodynamic data for safety relevant radionuclides was obtained at room 

temperature and is restricted in most cases to values for log K˚(25˚C) (see Fig. 10 for the data from the 

PSI/Nagra TDB 12/07, Thoenen et al. 2014) which is insufficient to warrant extrapolation to higher 

temperatures. This lack of data is also evident by looking at the speciation of radionuclides in the 

Opalinus Clay reference porewater, where species with insufficient thermodynamic data (only log 

K˚(25˚C) known) predominate (see Table 5).  

It is clearly not possible to obtain this large amount of missing data within a realistic time and cost frame 

without resorting to estimation methods, one of which is the isocoulombic estimation method (see, e.g., 

Gu et al., 1994; Lindsay, 1980; Puigdomenech et al., 1997) Miron et al. (2020). 
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Table 5. Speciation of some safety relevant radionuclides in the Opalinus Clay reference porewater (data from 
Thoenen et al. 2014). Only log K˚(25˚C) is known for species marked in red, which is insufficient for calculating the 
speciation at higher temperatures. 

Element Species  %  Element Species  % 

Ni Ni2+  72  Np Np(OH)4   100 

 NiSO4(aq)  23  Pu PuSiO(OH)3+2   39 

 NiCl+  4   PuCO3+   33 

Se HSe-  59   PuSO4+   11 

 Se4
2-  38   PuCO3(OH)3-   4 

 Se3
2-  3   Pu(SO4)2-   3 

Zr Zr(OH)4(aq)  100   Pu+3   3 

Tc  TcO(OH)2(aq)  91   Pu(CO3)2-   3 

 TcCO3(OH)2(aq)  9   PuOH+2   1 

Th Th(OH)2(CO3)2
2-   3   PuCl+2   1 

 Th(OH)4(aq)  27  Am AmSiO(OH)3+2   47 

U CaUO2(CO3)3
2-   80   AmCO3+   39 

 Ca2UO2(CO3)3(aq)   8   Am+3   4 

 MgUO2(CO3)3
2-   5   Am(CO3)2-   4 

 UO2(CO3)3
4-   5   AmSO4+   3 

 UCO3(OH)3
-   1   AmHCO3+2   2 

 

 

Figure 10. Histogram of the number of aqueous species present in the PSI/Nagra TDB 12/07 (Thoenen et al. 2014). 
The numbers of species for which only log K˚(25˚C) is known are marked in red, those for which additionally 
∆rS˚(25˚C) or ∆rH˚(25˚C) are known are marked in orange. Only for a single species (marked in green) are values 
known for log K˚(25˚C), ∆rS˚(25˚C) or ∆rH˚(25˚C), and ∆rCp(25˚C). 
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2.2. Thermodynamic basics 

The general expression for the isobaric temperature dependence of the equilibrium constant K˚ of a 

reaction is given by 

log10K∘(T) =
T0

T
log10K∘(T0) + (1 −

T0

T
)

 ∆rSm
∘ (T0)

R ln(10)
−

1

RT ln(10)
∫  ∆rCp,m

∘ dT
T

T0

+
1

R ln (10)
∫  ∆rCp,m

∘ dlnT
T

T0

 

where T is the temperature of interest, T0 the reference temperature (usually 298.15 K or 25˚C), ∆rSm˚ 

the standard molar entropy of reaction, ∆rCp,m˚ the standard molar isobaric heat capacity of reaction, 

and R the gas constant (see Appendix A for a derivation). If information on the temperature dependence 

of ∆rCp,m is missing, it is often assumed that ∆rCp,m is constant over the temperature interval under 

consideration, leading to the 3-term approximation (see Appendix A for details) 

log10K∘(T) =
T0

T
log10K∘(T0) + (1 −

T0

T
)

 ∆rSm
∘ (T0)

R ln(10)
− (1 −

T0

T
+ ln

T0

T
)

 ∆rCp,m
∘ (T0)

R ln(10)
 

Assuming that ∆rCo
p,m(T0) is not only constant but also equal to zero results in the 2-term approximation 

(van't Hoff) 

log10K∘(T) =
T0

T
log10K∘(T0) + (1 −

T0

T
)

 ∆rSm
∘ (T0)

R ln(10)
 

If ∆rSo
m(T0) is also assumed to be equal to zero, one finally obtains the 1-term approximation (type A) 

log10K∘(T) =
T0

T
log10K∘(T0) 

Note that all of these reactions may also be expressed in terms of ∆rHo
m (see Appendix A for details). In 

that case, the corresponding 1-term approximation (type B) is 

log10K∘(T) = log10K∘(T0) 

The 3-, 2-, and 1-term approximations are not generally applicable. However, it is often possible to use 

them for isocoulombic and, to a much lesser extent, for isoelectric reactions, both of which will be 

discussed in the following section.  

2.3. Isocoulombic estimation method 

In isocoulombic reactions equal numbers of like-charged species appear on both sides of the reaction, 

as in 

HPO4
2- + HSO4

- ⇌ H2PO4
- + SO4

2- 

while in isoelectric reactions the sum of positive or negative charges is equal on both sides of a reaction 

as in 
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Ni2+ + H2O(l) ⇌ Ni(OH)+ + H+ 

The fundamental assumption of the isocoulombic principle is that in aqueous electrolyte solutions the 

interaction of solutes with the solvent are mainly of electrostatic nature and that the thermodynamic 

properties of like charged species have similar responses to changes in temperature and ionic strength 

(Gu et al., 1994). When equal numbers of like-charged species appear on both sides of a reaction, the 

temperature dependencies of like-charged species are similar and tend to cancel, leading to a nearly 

constant heat capacity of reaction (advocating the use of the 3-term approximation). In a seminal paper, 

Lindsay (1980) gave numerous examples of isocoulombic reactions where the heat capacities of reaction 

are not only nearly constant but also close to zero, such that the 2-term approximation can be safely 

applied. GU et al. (1994) argued that since the change in entropy is closely related to the solute-solvent 

interaction (and thus to the charge of the ion), isocoulombic reactions should not only balance the heat 

capacities but also the entropies, leading to both heat capacities and entropies of reaction close to zero. 

In such a case, the 1-term A approximation could be used. 

In order to apply the isocoulombic estimation method to a general (non-isocoulombic) reaction, it is 

necessary to have another reaction at hand (called model reaction by some authors, e.g., Wood and 

Samson, 1998) whose variation of thermodynamic parameters over the required temperature range is 

well-known and which can be combined with the general reaction in such a way that an isocoulombic 

reaction is formed.  

Take for example the formation reaction of bicarbonate 

CO2(aq) + H2O(l) = HCO3
- + H+ 

whose log10K was determined at saturation pressure up to 300˚C.  The values for log10K˚(25˚C), -6.35, 

∆rS˚(25˚C), -91.2 J mol-1 K-1, and ∆rCp˚(25˚C), -338 J mol-1 K-1 determined by Patterson et al. (1982) can be 

used to apply the 1-term, 2-term, and 3-term approximations for this non-isocoulombic reaction. As 

shown in Fig. 2.2, the 1-term A approximation overestimates the experimentally determined 

log10K(100˚C) by 1.2 log units, the 2-term approximation by 0.3 log units and the 3-term approximation 

by only -0.13 log units. The respective deviations at 300˚C are 5.2, 2.9, and -0.15 log units. 

It is evident that the 1-term A approximation is inadequate for extrapolating values of log10K even to 

temperatures in the close vicinity of room temperature, while the 2-term approximation works well up 

to about 120˚C and the 3-term approximation all the way up to 300˚C. 

These approximations can be significantly improved by considering an isocoulombic variant of the 

bicarbonate-forming reaction 

CO2(aq) + OH- = HCO3
- 

which is formed from CO2(aq) + H2O(l) ⇌ HCO3
- + H+ by adding the model reaction H+ + OH- ⇌ H2O(l). 

Combining the values of log10K˚(25˚C), ∆rS˚(25˚C), and ∆rCp˚(25˚C) for the non-isocoulombic reaction 

with those for the model reaction (13.993, 80.67 J mol-1 K-1, and 231.38 J mol-1 K-1, resp., from Busey and 

Mesmer, 1978) leads to the corresponding values for the isocoulombic reaction. It is clear from Fig. 2.2 

that both the 1-term A and the 2-term approximations allow the extrapolation of log10K to temperatures 

well above 100˚C, while there is negligible deviation of the 3-term estimations from experimental data 

at all temperatures. 
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Figure 11. Comparison of temperature extrapolations using the 1-term A, 2-term, and 3-term estimates for 
isocoulombic (below) and non-isocoulombic formulations (above) of the formation reaction of the bicarbonate 
anion. Experimental data for CO2(aq) + H2O(l) = HCO3

- + H+ from Patterson et al. (1982) and for H+ + OH- = H2O(l) 
from Busey and Mesmer (1978). 

2.4. Systematic evaluation of the use of isocoulombic/isoelectric reactions for logK 

temperature extrapolations 

The lanthanide and actinide systems are of interest in fields such as radioactive waste disposal, REE ore 

deposits, etc. and their properties tend to vary gradually along the series. While new experimental data 

are gradually becoming available they are not yet sufficient to cover the large number of species, 

especially concerning their stability at elevated temperature. The isocoulombic method is a suitable 

option when limited data is available. This is specifically important for reactions that have only values for 

the equilibrium constant at ambient conditions. Extrapolating the properties of an isocoulombic reaction 

guarantees that the error due to the unknown reaction properties (setting entropy/enthalpy and/or 

heat capacity of reaction to zero) is smaller compared with the error introduced by using the direct 

complexation or dissolution reaction for extrapolating properties. 
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Figure 12. Flow-chart (Miron et al., 2020) of a procedure for the systematic evaluation of 𝑙𝑜𝑔𝐾𝑇
°  temperature 

trends by generating all possible isocoulombic combinations from a list of selected reactions and testing the quality 

of the 𝑙𝑜𝑔𝑒𝐾𝑇
°  estimates. 

Details on the systematic evaluation are described in Miron et al. (2020). The authors present an 

extensive application of the (established) isocoulombic method on existing datasets for lanthanide and 

actinide speciation using a new methodology consisting of: automatically generating reactions, 

combining them into isocoulombic reactions and doing a systematic evaluation and validation of 

temperature extrapolations against independent experimental data. This allows to create all possible 

alternative reactions and identify criteria for choosing the optimal ones that produce the most accurate 

extrapolations. The methodology is shown in the flowchart (Figure 12) and was streamlined using the 

dedicated database and tools for efficient processing and generating reactions (see section 1). This 

methodology is applied to the lanthanide and actinide series, taking advantage of new experimental 

data, to establish principles for generating isocoulombic reactions that produce the best temperature 

extrapolations, especially since many complexation data is limited to ambient conditions. 

For the systematic investigation of the isocoulombic method to temperature extrapolations, 

thermodynamic data for substances and reactions were collected from different sources and published 

databases (e.g. Guillaumont et al., 2003; Haas et al., 1995; Lemire et al., 2001; Migdisov et al., 2009; 

Thoenen et al., 2014, and references therin). To use the isocoulombic method, the thermodynamic data 

needs to be in the form of reactions. From the collected substances, reactions were created using the 

reaction generator (see section 1.2.2) and saved in the database. These could be then combined into 

isocoulombic reactions.  
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For a dataset of selected reactions, the isocoulombic reactions are automatically generated by 

considering all possible combinations. These are then used for estimations using the one-, two-, or 

three-term extrapolations, as if we had only a limited amount of data (Figure 12). The quality of the 

estimates is then determined by comparing them with a set of independent experimental, loge𝐾𝑇
°  

values (some measurements retrieved in the ThermAc) for the reaction of interest (Miron et al., 2020). 

To identify criteria for choosing the optimal isocoulombic reactions, data on trivalent lanthanide La(III) 

fluoride and chloride aqueous complexes from Migdisov et al. (2009) was used as a learning dataset. 

This dataset contains high quality temperature data for many lanthanide complexes. For the “blind 

testing”, we excluded La, Eu, and Tm from the full Ln(III) dataset; the remaining species and their 

reactions were used as a “learning stage” dataset. All complexation reactions with chloride and fluoride 

were generated and their standard properties of reaction were calculated from standard properties of 

reactants and products. Next, we considered all possible combinations between the fluoride 

complexation reactions to generate isocoulombic reactions (Figure 12, row 3). For each combination of 

two reactions, one reaction was considered the investigated reaction (with assumed unknown 

temperature trend) and the other the model reaction (with known temperature trend). The loge𝐾𝑇
°  

were estimated from the logi𝐾𝑇
°  of the isocoulombic reaction extrapolated using the one-, two-, or 

three-term extrapolations and the logm𝐾𝑇
°  of the model reaction calculated using the HKF model. The 

quality of estimated loge𝐾𝑇
°  was compared with values calculated from the HKF model parameters 

reported by Migdisov et al. (2009).  

The main observations from the learning datasets was that the smaller the difference in the hydrated 

ionic radii between the lanthanide ion present in the reaction of interest and the ion in the model 

reaction the better the estimate (Figure 13). Another observation is that the loge𝐾𝑇
°  estimates from the 

one-term extrapolation of the logi𝐾𝑇
°  have average deviations smaller than 0.3 log units for the 

investigated 0 to 250 ℃ temperature interval.  

 

   

Figure 13. Mean of the differences between the 𝑙𝑜𝑔𝐾𝑇
°  values of the displayed reactions of interest calculated using 

the HKF model (properties of reactants, based on experimental data) and the 𝑙𝑜𝑔𝑒𝐾𝑇
°   values estimated using one-

term A, one-term B, two-, and three-term extrapolations for a temperature interval from 0 to 250 ℃ with a 5 ℃ 
step plotted against the difference in the ionic radius between the La(III) ion in the reaction of interest and the ion 
in the model reaction (marked on each data-point). For the one-term A extrapolation, the standard deviation is also 
shown. Ionic radii values taken from D’Angelo et al. (2011). 
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Based on the relation between the quality of the estimates and the difference in the ionic radii the 

standard property effects of reaction at elevated temperatures for La, Eu, and Tm fluoride complexation 

reactions previously excluded from the learning dataset can be estimated reasonably well (Figure 14 A). 

This was done assuming that only their log𝐾25 ℃
°  is known. As seen in Figure 14 B, the values estimated 

using the one-term A extrapolation and model reactions having more different ionic radii leads to 

significant deviations from the experimental trend. 

 

  
  

 

Figure 14. Experimentally-based 𝑙𝑜𝑔𝐾𝑇
°  of the LaF+2 formation reaction (red circles) and values estimated using the 

one-term A extrapolation of 𝑙𝑜𝑔𝑖𝐾𝑇
°   of isocoulombic reactions resulted from combining the LaF+2 formation reaction 

with the model reactions shown (colored curves): (A) For model reactions of Ln(III) cations having hydrated ionic radii 
similar to that of La+3 (< 0.1 Å). (B) For model reactions of Ln(III) cations having ionic radii different from that of La+3 
(> 0.1 Å). 

 

Because Ln(III) and An(III) have almost identical hydrated ionic radii (D’Angelo et al., 2013) the 

properties of complexation reactions as a function of temperature can be estimated from temperature 

data available in one or the other element group (used as model reactions).  

The same methodology was applied in the case of actinide complexation (whit less extensive elevated 

temperature data available) (Figure 15) (Miron et al., 2020). The main focus is on cases where the 

thermodynamic properties for both model reaction and the reaction of interest are known, and 

experimental values for logeK𝑇
°  are also available in order to validate the isocoulombic method and to 

provide guidelines for choosing the model reactions that are expected to result in the best estimates. 

The results show that similar actinides and lanthanides (based on the ionic radius and solvation 

properties) can be used as analogues for the temperature dependence and, when combined into 

isocoulombic reactions, the temperature dependence can be calculated just using the logK298
° . This is of 

great importance for closing the existing gaps and thereby enhancing the applicability of thermodynamic 

(A) Δ Ir <0.1 Å (B) Δ Ir >0.1 Å 
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calculations of chemical equilibria, until new experimental data on the temperature trends of 

complexation reactions become available. 

 

  

Figure 15. Independent experimental data points (symbols) compared with estimated 𝑙𝑜𝑔𝐾𝑇
°  (lines) for the 

displayed reactions using isocoulombic reactions constructed with analogue model reactions of the elements in the 
legend. Experimental data from (Di Bernardo et al., 2018; Jordan et al., 2018; Xia et al., 2007) and data for model 
reactions from (Guillaumont et al., 2003; Jordan et al., 2018; Lemire et al., 2001). 

 

Finally, for using the isocoulombic method to estimate the thermodynamic properties for reactions with 

unknown temperature dependence, a three-step methodology is recommended (Miron et al., 2020): 

“(Step 1) seek for the “best” available model reaction in order to construct an isocoulombic exchange 

reaction; (Step 2) extrapolate logiK𝑇
°  of the isocoulombic reaction using the appropriate one-, two-, or 

three-term extrapolation method depending on the availability of thermodynamic data; and (Step 3) 

estimate logeK𝑇
°  of the reaction of interest as a function of temperature, or retrieve the standard-state 

thermodynamic properties of the substance of interest at T and T298. “ 

2.5. Application and test of the isocoulombic estimation method for the solid 

solution – aqueous solution system (Ba, Sr, Ra)SO4(s)–H2O(l) 

Isocoulombic extrapolations were used along with other predictions and correlations to elaborate on 

consistency of the thermodynamic dataset for (Ba,Sr,Ra)SO4 aqueous – solid solution systems, 

applicable for a wide temperature range from 0 to 300 oC. (collaboration of D. Kulik with V. Vinograd, 

FZJ, (Vinograd et al., 2018a, 2018b)). 

In the first part of this work, we used literature data and several prediction and correlation methods to 

obtain an internally consistent thermodynamic dataset for the solids BaSO4,cr (baryte), SrSO4,cr 

(celestine), PbSO4,cr (anglesite) and RaSO4,cr, compatible with the PSI/Nagra TDB 12/07 (Thoenen et al., 

2014)in the GEMS version (http://gems.web.psi.ch), and valid for temperature corrections in the range 0 

to 300˚C (Tables 6,7).  
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Table 6. The “tCp” dataset for standard thermodynamic properties of MSO4,cr solids (from Vinograd et al.  
2018a,b). Units: J/bar; kJ/mol; J/K/mol.  

Solid Vo
298 Go

298 Ho
298 So

298 Cpo
298 

CaSO4 4.59 -1321.97 -1434.15 107.4 101.2 

SrSO4 4.63 -1346.14 -1457.76 123.4 100.3 

PbSO4 4.80 -813.10 -919.95 148.5 104.3 

BaSO4 5.21 -1362.15 -1473.15 132.2 101.7 

RaSO4 5.54 -1364.52 -1475.96 139.3 102.5 

 

Table 7. Cp=f(T) polynomial coefficients for the “tCp” dataset for MSO4,cr solids         

Solid a0 a1 (*T) a2 (/T2) a3 (/T0.5) a4 (*T2) Tmax, C References 

CaSO4 372.8 -0.1574 1.695e6 -4330.8 7.99e-5 827 RH95 

SrSO4 77.96 0.08831 -1.213e6 189.0 -1.449e-5 827 VK 

PbSO4 46.83 0.1278 1.724e6 0 0 827 RH95 

BaSO4 224.6 -0.07395 -1.17e6 -1587 4.784e-5 827 VK 

RaSO4 225.4 -0.07395 -1.17e6 -1587 4.784e-5 600 VK 

References: RH95 (Robie and Hemingway, 1995); VK: Vinograd et al. (2018a, 2018b).  

 

This dataset with the coefficients of the heat capacity function Cp
o = f(T) was used  to calculate the 

standard reaction properties of the dissolution reactions, labelled as (R), MSO4,cr = M2+ + SO4
2-, with M = 

(Sr, Pb, Ba, Ra), forming the “R3” thermodynamic dataset (see Table 8). The standard reaction properties 

of the isocoulombic exchange reactions, labelled as (I), M1SO4,cr + M22+ = M2SO4,cr + M12+ were 

calculated by combining the reaction properties of the appropriate dissolution reactions from the 

dataset “R3”, thus resulting in the “I3” dataset. For example, the (I) reaction BaSO4,cr + Ra2+ = RaSO4,cr + 

Ba2+ is the difference of the (R) reactions BaSO4,cr = Ba2+ + SO4
2- and RaSO4,cr = Ra2+ + SO4

2-; hence, any 

property of the (I) reaction is equal to the difference of the respective properties of the two (R) 

reactions, for instance log10K(I),Ba-Ra = log10KBa - log10KRa. 

By means of GEM-Selektor (DComp, ReacDC and RTparm modules), we compared the applicability of 

dissolution reactions (R) and isocoulombic reactions (I) to simple temperature approximations of the 

thermodynamic properties of MSO4 crystalline solids. Such approximations have the form  

log10KT = 0.4343 (A - B/T + C lnT)   
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with A = (ΔrSo
298 - (1+ln(298.15))ΔrCp

o
298)/R, B = (ΔrHo

298 - 298.15·ΔrCp
o

298)/R, and C = ΔrCp
o

298/R, where R = 

8.31451 J/mol is the universal gas constant and 298.15 K the reference temperature (see also Section 

2.2). Two-term approximation means that the heat capacity effect of reaction, ΔrCp
o

298, is set to zero, 

and one-term approximation - that both ΔrCp
o

298 and ΔrSo
298 are set to zero. From the log10K value at the 

temperature of interest T, the standard Gibbs energy of the solid (e.g. RaSO4,cr), needed for GEMS 

model calculations, can be found by using ΔrGo
T = -(RT log10K)/0.4343 and the standard Gibbs energies at 

T of the other substances involved in the reaction.  

 

Table 8. Dataset “R3” (based on the “tCp” dataset, Table 7) for MSO4,cr = M2+ + SO4
2- (from Vinograd et al.  

2018a,b). Units: J/bar; kJ/mol; J/K/mol. 

Solid log10Ko
298 rVo

298 rGo
298 rHo

298 rSo
298 rCpo

298 

CaSO4 -4.33 -5.15 24.72 -18.53 -145.1 -398.2 

SrSO4 -6.63 -5.11 37.84 -0.88 -129.9 -412.1 

PbSO4 -7.84 -5.10 44.75 11.33 -112.1 -423.1 

BaSO4 -9.97 -5.21 56.91 25.98 -103.7 -418.8 

RaSO4 -10.26 -5.50 58.56 38.74 -66.51 -428.1 

 

 

In Fig. 16, the predictions from three-term T extrapolations for log10KT using the “R3” dataset are shown 

in comparison with those of (Brown et al., 2015) and some experimental data. As seen in this figure, 

three-term extrapolations for dissolution reactions provide rather accurate descriptions of MSO4,cr 

solubility at temperatures at least below 250˚C. All curves have maxima that shift to higher 

temperatures in the sequence Ca – Sr – Pb – Ba – Ra. Note that the curves for RaSO4,cr and BaSO4,cr 

cross at ca. 70˚C, and that at higher temperatures, radium sulphate becomes more soluble than baryte. 

Also the logK differences between all sulphate solids get smaller with increasing temperature.  

Applicability ranges of different temperature approximations using reaction effects from Table 8 are 

shown in Fig. 17 as differences to the standard Gibbs energy Go
T(RaSO4,cr) directly  computed from the 

“tCp” dataset by heat capacity integration (assuming that this “tCp” dataset is the most accurate). We 

note that R1 and R2 (notation: Rn, with n = 1, 2, 3, refers to the n-term extrapolation of a dissolution 

reaction) extrapolations are inaccurate, except in a narrow region around the reference temperature 

298.15 K, clearly because of neglecting the very large heat capacity (and entropy) effects of the 

dissolution reactions. The R3 approximation is good up to 350 K, then it slightly overestimates the 

stability of RaSO4,cr up to 500-550 K, and becomes inaccurate above 550-560 K. However, I2 and I3 

(notation: In, with n = 1, 2, 3, refers to the n-term extrapolation of an isocoulombic reaction) 

extrapolations remain accurate in the whole temperature range, which means that the heat capacity 

effect of the isocoulombic reactions is insignificant and can be ignored. The I1 extrapolation becomes 

inaccurate already above 340 K because of neglecting the (still significant) entropy effect.  
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Figure 16. Solubility products of MSO4 solids vs inverse temperature (K). Solid curves: our predictions from the R3 
dataset (Table 8); dashed curves: predictions using Brown et al. (2015); colored scattered symbols: experimental 
data for RaSO4,cr – circles and triangles: from solubility of (Ba,Ra)SO4, Brandt et al. (2015); Vinograd et al. 
(2018a,b); – diamonds and squares: from solubility of pure RaSO4,cr, Hedström (2013)and Nikitin & Tolmatscheff 
(1933). Crosses are the interpolated MSO4,cr solubility data from Raju & Atkinson (1988, 1990, 1989) and Howell et 
al. (1992); pluses and asterisks – solubility data for PbSO4,cr (Helgeson, 1969; Khodakovsky et al., 1966). 

 

Figure 17. Comparison of differences of Go
T(RaSO4,cr) obtained by various T approximations of (R) and (I) reactions 

from Go
T(RaSO4,cr) calculated directly using the “tCp” dataset. Digits after ‘R’ or ‘I’ mean: 3 – three-term; 2 – two-

term with ΔrCp
o

298 set to 0; 1 – one-term with both ΔrCp
o

298 and ΔrSo
298 set to 0; Brown R3 - three-term 

approximation using parameters from Brown et al. (2015) instead of those from Table 8. Dotted lines show 
uncertainty intervals of ±0.5 log10K units. I1, I2, I3 curves are obtained from the reaction RaSO4,cr + Ba+2 = BaSO4,cr 
+ Ra+2, except the short-dash I3 curve derived from the reaction RaSO4,cr + Pb+2 = PbSO4,cr + Ra+2. 

 

We conclude that two-term (Van’t Hoff) temperature approximations of isocoulombic reactions in the  

solid solution –  aqueous solution system (Sr,Ba,Ra)SO4(cr) – H2O(l) are safe to use in the range from 0˚C 

to 300˚C because the very large rCpo
298 effects of (R) reactions (see Table 8) due to ion hydration 

essentially cancel out in (I) reactions. The entropy effects rSo
298 are less similar and do not compensate 

well even in (I) reactions, so the one-term approximation is not very appropriate. 
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In the second part of this study (Vinograd et al. 2018a,b), atomistic methods were used to re-evaluate 

parameters of mixing in the ternary (Sr,Ba,Ra)SO4 solid solution system, leading to a regular model of 

mixing with binary interaction parameters given in Table 9 and zero ternary parameter. This model of 

mixing, together with the “tCp” thermodynamic dataset and the PSI/Nagra TDB 12/07, was used in 

GEM-Selektor simulations of SS-AS systems firstly involving a binary (Ba,Ra)SO4 phase to test 

temperature trends of radium retention in baryte (a widely recognized repository-relevant issue).  

In addition, a ternary (Sr,Ba,Ra)SO4 phase was employed to investigate the impact of adding Sr to baryte 

on the retention of radium at various temperatures. This scenario is of interest because natural barytes, 

e.g., such as found in the Opalinus Clay, have various contents of Sr, and the porewater in clayrock 

appears to be saturated with respect to celestine. Process simulations were conducted using parent 

systems composed of 1 kg of H2O, 0.1 mol of NaCl, 5.10-6 mol RaCl2, 0.1 g of dry air, and either 0.5 g or 

5.0 g BaSO4 initially. The SUPCRT extended Debye-Hückel aqueous activity model was used. 

 

 

Figure 18. Temperature variations of mole fraction xRaSO4 in solid, fractionation coefficient DRa, dissolved aqueous 
Baaq and Raaq (log molal) in the equilibrium SS-AS system. Solid curves: W0 = 2.0 kJ/mol, solid/water ratio S/W = 0.5 
g/kg; medium dashed: W0 = 2.0 kJ/mol, S/W = 5.0 g/kg. Short-dashed curves show the shifts if W0 = 2.47 kJ/mol is 
used (Table 9). Triangles correspond to recrystallization experiments from (Brandt et al. 2015; Vinograd et al. 
2018a,b). 

Table 9. Binary interaction parameters of a regular mixing model for the ternary (Sr,Ba,Ra)SO4 solid solution system 
evaluated using atomistic methods (Vinograd et al. 2018a,b). The ternary interaction parameter is zero. 

W0 Value (kJ/mol) 

WBaRa 2.47 ± 0.5  

WBaSr 4.95 ± 0.5 

WSrRa 17.5 ± 1.5 
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In the case of the binary SS system, only temperature was changed (at two S/W ratios). The fit to 

experimental data was found slightly better when a lower W0 = 2.0 kJ/mol parameter was used. Overall, 

it is clear that the most efficient immobilization of radium in solid solution with baryte happens at lower 

temperatures and higher S/W ratios – the latter produce a stronger “dilution effect” for Ra in solid 

solution. At 125˚C, the mobility of radium will be ca. 10 times higher than at 25˚C (all other parameters 

kept constant). The Ra-Ba fractionation coefficient in the solid DRa is the ratio of two distribution ratios:      

Kd(Ra) = nss(Ra)/nss(S)/maq(Ra);  Kd(Ba) = nss(Ba)/nss(S)/maq(Ba);  DRa = Kd(Ra) /Kd(Ba) 

where nss is the amount of element in solid solution phase(s) and maq is its molality in the aqueous 

phase. As seen in Fig. 19, DRa decreases with temperature by two orders of magnitude. 

In systems with the ternary solid solution (with interaction parameters from Table 9), the same initial 

recipes were used as before (at S/W = 0.5 g/kg or 5.0 g/kg BaSO4). During the process calculations, the 

composition of solid solution was changed by stepwise addition of SrSO4 (starting from 1.10-6 mol) and 

subtraction of BaSO4 such that the mass of the solid phase remained constant at the given S/W ratio. 

Simulations were performed at several temperatures, as shown in Fig. 19. 

At both S/W ratios, the addition of SrSO4 to baryte results in a much stronger retention of radium, 

especially at low temperatures, the strongest at 7-10% of Sr end member (Fig. 19 A, B, and D). In 

comparison with the binary (Ba,Ra)SO4 – H2O system at the same S/W ratio, the addition of 5-10% Sr 

results in an about 9-11 times lower aqueous Raaq concentration; this effect becomes much weaker at 

increasing temperature. As seen in Fig. 19 B, this is because the common anion effect, due to a much 

higher aqueous concentration of sulphate at higher Sr contents in the solid solution, decreases the 

equilibrium aqueous solubility of both Ba and Ra, adding to the dilution effect of Ra in the solid solution. 

In the Opalinus clayrock, natural diagenetic Ba-Sr sulphate cements contain 22% to 90% Sr and fibrolytic 

baryte along shear planes 2 to 12 % Sr (Lerouge et al., 2014). In the Callovo-Oxfordian clayrock, rare 

diagenetic barite contains up to 19% Sr and more abundant celestine contains 7 to 16% Ba (Lerouge et 

al., 2011). In both clayrocks, the porewater is assumed saturated with respect to celestine (as seen in 

Fig. 19 D, this corresponds to the presence of celestine with less than 10-12% Ba).  
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Figure 19. The impact of Sr content in the ternary non-ideal (Sr,Ba,Ra)SO4 solid solution onto Ra uptake at 5.10-6 m 
RaCl2, constant S/W mass ratios of 0.5and 5.0  g/kg, and different temperatures at 1 bar (150˚C at saturated 
vapour pressure). See text for explanations.  

 

Such predictions of equilibrium Ra retention in non-ideal ternary (Ba,Sr,Ra)SO4 solid solutions can only 

be calculated using GEM algorithms (advanced LMA codes can only solve speciation involving binary or 

ideal solid solutions, (Reed, 1982)). Indeed, our results are more realistic than those involving pure (Sr-

free) baryte, hence comprising a more general and favourable case for considering disposal safety.  
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Appendix A: Derivation of the temperature extrapolation equations 

Glossary of symbols 

∆rCp,m
∘  Standard molar isobaric heat capacity effect of reaction 

∆rGm
∘  Standard molar Gibbs free energy effect of reaction 

∆rHm
∘  Standard molar enthalpy effect of reaction 

∆rSm
∘  Standard molar entropy effect of reaction 

T Temperature, absolute 

T0 Reference temperature 

ln Natural logarithm 

log10 Decimal logarithm 

K∘ Equilibrium constant 

 

The standard molar Gibbs free energy change of reaction at temperature T is defined by  

 ∆rGm
∘ (T)  =  ∆rHm

∘ (T) − T∆rSm
∘ (T) (A1) 

The rate of change of the standard molar enthalpy of reaction with temperature at constant pressure is 

given by 

 (
 ∂∆rHm

∘

∂T
)

p
=  ∆rCp,m

∘  (A2) 

and that of the standard molar entropy of reaction by 

 (
 ∂∆rSm

∘

∂T
)

p
= 

 ∆rCp,m
∘

T
 (A3) 

Integration of eq. (A2) leads to 

  ∆rHm
∘ (T) = ∆rHm

∘ (T0) + ∫  ∆rCp,m
∘ dT

T

T0
 (A4) 

and integration of eq. (A3) to 

  ∆rSm
∘ (T) =  ∆rSm

∘ (T0) + ∫
 ∆rCp,m

∘

T
dT

T

T0
 (A5) 

which is equivalent to 

  ∆rSm
∘ (T) =  ∆rSm

∘ (T0) + ∫  ∆rCp,m
∘ dlnT

T

T0
 (A6) 

Inserting eqs. (A4) and (A6) into eq. (A1) and rearranging terms results in 
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 ∆rGm
∘ (T) =  ∆rHm

∘ (T0) − T ∆rSm
∘ (T0) + ∫  ∆rCp,m

∘ dT
T

T0
− T ∫  ∆rCp,m

∘ dlnT
T

T0
 (A7) 

From eq. (A1) follows (replacing T by T0) 

 ∆𝑟𝐻𝑚
∘ (𝑇0) =  ∆𝑟𝐺𝑚

∘ (𝑇0) + 𝑇0∆𝑟𝑆𝑚
∘ (𝑇0) (A8) 

Inserting eq. (A8) into eq. (A7) leads to a general expression for the temperature dependence of the 

standard molar Gibbs free energy of reaction 

 ∆rGm
∘ (T) =  ∆rGm

∘ (T0) − (T − T0) ∆rSm
∘ (T0) + ∫  ∆rCp,m

∘ dT
T

T0
− T ∫  ∆rCp,m

∘ dlnT
T

T0
 (A9) 

An equivalent expression can be obtained by replacing  ∆rSm
∘ (T0) with 

 ∆rSm
∘ (T0)  =  

∆rHm
∘ (T0)−∆rGm

∘ (T0)

T0
 (A10) 

which follows from eq. (A8). Thus 

 ∆rGm
∘ (T) =

T

T0
 ∆rGm

∘ (T0) + (1 −
T

T0
) ∆rHm

∘ (T0) + ∫  ∆rCp,m
∘ dT

T

T0
− T ∫  ∆rCp,m

∘ dlnT
T

T0
 (A11) 

Similar expressions for the temperature dependence of the equilibrium constant can be obtained by 

inserting 

 ∆rGm
∘ (T) =  −RT lnK∘(T) = −RT ln(10) log10K∘(T) (A12) 

into eqs. (A9) and (A11), resulting in 

log10K∘(T) =
T0

T
log10K∘(T0)  (A13) 

 + (1 −
T0

T
)

 ∆rSm
∘ (T0)

R ln(10)
−

1

RT ln(10)
∫  ∆rCp,m

∘ dT
T

T0
+

1

R ln (10)
∫  ∆rCp,m

∘ dlnT
T

T0
 

and 

log10K∘(T) = log10K∘(T0)  (A14) 

 − (
1

T
−

1

T0
)

 ∆rHm
∘ (T0)

R ln(10)
−

1

RT ln(10)
∫  ∆rCp,m

∘ dT
T

T0
+

1

R ln (10)
∫  ∆rCp,m

∘ dlnT
T

T0
 

If  ∆rCp,m
∘  is assumed to be constant over the considered temperature interval, the integrals in the 

expressions above can be evaluated as follows: 

 ∫  ∆rCp,m
∘ dT

T

T0
= (T − T0) ∆rCp,m

∘ (T0) (A15) 

 ∫  ∆rCp,m
∘ dlnT

T

T0
= ln

T

T0
 ∆rCp,m

∘ (T0) (A16) 
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Inserting these equations into eqs. (A13) and (A14) leads to the 3-term temperature extrapolation 

equations 

 log10K∘(T) =
T0

T
log10K∘(T0) + (1 −

T0

T
)

 ∆rSm
∘ (T0)

R ln(10)
− (1 −

T0

T
+ ln

T0

T
)

 ∆rCp,m
∘ (T0)

R ln(10)
 (A17) 

and 

 log10K∘(T) = log10K∘(T0) − (
1

T
−

1

T0
)

 ∆rHm
∘ (T0)

R ln(10)
− (1 −

T0

T
+ ln

T0

T
)

 ∆rCp,m
∘ (T0)

R ln(10)
 (A18) 

If it is assumed that  ∆rCp,m
∘ = 0, eqs. (A17) and (A18) are reduced to the 2-term temperature 

extrapolation equations 

 log10K∘(T) =
T0

T
log10K∘(T0) + (1 −

T0

T
)

 ∆rSm
∘ (T0)

R ln(10)
 (A19) 

and 

 log10K∘(T) = log10K∘(T0) − (
1

T
−

1

T0
)

 ∆rHm
∘ (T0)

R ln(10)
 (A20) 

The 1-term temperature extrapolation equations  

 log10K∘(T) =
T0

T
log10K∘(T0) (A21) 

and 

 log10K∘(T) = log10K∘(T0) (A22) 

are finally obtained by assuming that either  ∆rSm
∘ (T0) = 0, equation (A21), or  ∆rHm

∘ (T0) = 0, equation 

(A22). 
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1 Introduction 

The disposal of high-level waste glass or spent nuclear fuel leads to elevated temperatures in 

the nearfield and the surrounding host rock of a radioactive waste repository. The temperature 

evolution will depend on many parameters, such as the type of waste and its thermal loading, 

the canister material, the engineered barriers, the type of host rock or the overall design of the 

repository itself. Consequently, the performance assessment of a repository for heat 

generating waste will have well-defined scenarios including those periods of time for which the 

thermal peaks are expected to occur in the different engineered and natural barriers. For these 

scenarios, sufficient knowledge on the processes influenced by elevated temperatures is 

needed. 

Nevertheless, aqueous and solid chemistry and geochemistry of radionuclides has been 

mostly studied at room temperature, mainly because performing experiments at temperatures 

different than 25°C is not straightforward and requires dedicated efforts and specific 

equipment. Takin into account the wide variety of elements and conditions for which data are 

needed, approaching the problem only from the experimental point of view would not be 

realistic. Therefore, besides experimental investigations, estimation methodologies are also 

required to cover the experimental gaps. 

In this context, the aim of the present work is to evaluate different estimation algorithms in 

order to expand the available thermodynamic data for actinides, long-lived fission products 

and relevant matrix elements in aquatic systems at temperatures higher than 25°C, using the 

methodology outlined in Figure 1-1. The final goal is to verify the accuracy of the different 

estimation methodologies and provide a solid basis for its application by comparing the results 

of the estimations with the experimental data generated within the project. 
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Figure 1-1. Summary of the methodology to fill in data gaps. 

The systems of main interest are both aqueous species and solid compounds for trivalent 

lanthanides and actinides (such as Nd(III), Cm(III) or Eu(III)), Np(V), U(VI) and Th(IV). Besides 

hydrolysis, aqueous species and solid oxides and hydroxides, other ligands to be considered 

are chloride, sulphate, carbonate and phosphate. Even though peak temperatures can reach 

200ºC (depending on the repository system), estimations are focused in the temperature range 

up to 90ºC and low or moderate ionic strengths, where most reliable results could be obtained.  
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2 Estimation methods 

Reliable experimental data related to temperature effects are scarce, due to the inherent 

difficulties in the experimental designs and interpretations. To overcome this disadvantage, 

different estimation methodologies have been reported by different authors. The procedures 

are diverse; different approaches have been proposed for aqueous species (section 2.1) and 

solid compounds (section 2.2). More detailed information on relevant estimation methods is 

provided in Appendix A. 

2.1 Aqueous species 

For aqueous species, most of the available methods use correlations between entropies of 

analogous complexes and parameters such as crystallographic radii, molar volumes and 

mass, electrical charge, etc.  

Langmuir (1978) empirically found that, for a given element, the entropies of aqueous 

complexes reasonably correlate with the charge (z) of the complexes. Baes and Mesmer 

(1981) suggested a dependency of the entropy of the hydrolysis reaction on the stability 

constant of the stepwise hydrolysis and the z/d ratio, where z is the charge of the cation and d 

is the interatomic distance between the cation and the oxygen atom in the complex. Shock et 

al. (1997) established correlations among experimental standard molal entropies of an 

aqueous hydroxide complex and the standard molal entropy of the corresponding cation 

(“SºCation”). Sverjensky et al. (1997) suggested a correlation between entropy of reaction and 

standard molal entropies of the cation and the ligand.  

The correlations were built up in the publications with the data available in that moment, 

leading to specific equations. In some cases, those equations can be built up again and/or 

extended using as a basis new and updated values or different species (chemically similar to 

the species for which the entropy has to be estimated). 

Information on those methods is provided in the sections below and in Appendix A. 

2.1.1 Correlations based on Baes & Mesmer approach 

The approach described by Baes and Mesmer (1981) is based on a correlation among the 

dependency on the entropy of the stepwise hydrolysis reaction and the charge of the species; 

an example proposed by the authors is shown in Figure 2-1. Details and original equations are 

provided in Table 6-8.  
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Figure 2-1. Correlation of the entropy of stepwise hydrolysis with the charge of the reacting species, 

from Baes and Mesmer (1981). All species involve water, hydroxide ion, or oxide ion as ligands. The 

points connected by line stand for stepwise hydrolysis.  

We have tested this approach using available experimental data for the hydrolysis of elements 

such as Al(III), Ni(II), U(IV), Th(IV), U(VI), etc... ThermoChimie database version 9b 

(www.thermochimie-tdb.com; Giffaut et al. 2014 ; Grivé et al. 2015) has been used as a source 

of information; in the database, the results of the NEA-TDB project are used as a primary data 

source for many radionuclides. Only those values coming from experimental sources have 

been used in the correlations. Results are shown in Figure 2-2. 

http://www.thermochimie-tdb.com/
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Figure 2-2. Correlation between ΔrSmº and charge of the species for different stepwise hydrolysis 

reactions. Blue circles are experimental data available for the stepwise hydrolysis of different metals 

and radionuclides; labels indicate some examples. The line represents the fitting of the available 

experimental data.  

2.1.2 Correlations based on Langmuir approach 

Langmuir (1978) suggested that the entropies of uranium aqueous complexes reasonably 

correlate with the charge (z) of the complexes, following the 4th degree polynomial equation 

(Figure 2-3). The approach proposed by Langmuir was later applied by Lemire and Tremaine 

(1980), Lemire (1984) and Lemire and Garisto (1989) (among others) to estimate the entropies 

of some Pu and Np hydroxides. 

y = 47.752x - 74.731

-300

-200

-100

0

100

200

300

-2-1012345

Δ
rS

m
°
(J
/m

o
l∙K

)

Charge (z-y)

Th4+ → Th(OH)3+

Ni2+ → Ni(OH)+

U(OH)3+ → U(OH)2
2+

PuO2
+ → PuO2(OH)

Fe(OH)3
- →Fe(OH)4

2-

Al(OH)3 →Al(OH)4
-



ThermAc – Estimations   

D-12 

 

 

Figure 2-3. Entropy vs valence for some uranium ions and complexes, as reported in Langmuir (1978). 

The line represents the fit to the 4th degree polynomial Sm
0 (cal/mol deg) = 8.3 – 10.55Z – 2.17Z2 + 

0.05Z3 – 0.13Z4. 

A similar correlation has been built up in present work using updated values; available 

experimental entropy data for mononuclear uranium species (Figure 2-4) and neptunium 

species (Figure 2-5) available in ThermoChimie version 9b and the NEA-TDB have been used 

in the correlations. 
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Figure 2-4. Langmuir-type correlation between Sm° and charge calculated in present work with uranium 

data. Blue circles are experimental data available for different uranium species; labels indicate some 

examples. The line represents the fitting of the available experimental data using a 4th degree 

polynomial.  
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Figure 2-5. Langmuir-type correlation between Sm° and charge calculated in present work with 

neptunium data. Blue circles are experimental data available for different neptunium species; labels 

indicate some examples. The line represents the fitting of the available experimental data.  

Langmuir and Herman (1980) also provided rough estimates for monomeric complexes of 

thorium. The original graph reported in Langmuir and Herman (1980) for estimating entropy 

values of Thorium species is provided in Figure 2-6. No anionic species are included in the 

graph; thus, this curve may not be adequate to estimate entropy values of anionic thorium 

species. 

 

Figure 2-6. Entropy vs valence for some thorium ions and complexes, as reported in Langmuir and 

Herman (1980). Entropy units are cal/mol deg. 

Although with a rather limited theoretical basis, it can be shown that available experimental 

entropies for lanthanide and actinide aqueous complexes follow a defined parabolic trend 

when represented versus the charge of the complex (Figure 2-7). This correlation was 

previously reported in Duro et al (2012). 
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Figure 2-7. Relationship between experimental entropies for lanthanide and actinide aqueous 

complexes and the charge of the complex, from Duro et al. (2012). Entropy units are J/mol K. 

2.1.3 Shock et al. (1997) approach 

Shock et al. (1997) suggested a correlation between standard molal entropies Sºm of an 

aqueous hydroxide complex and the standard molal entropy of the corresponding cation; an 

example is shown in Figure 2-8. The correlation was dependent on both the charge of the 

complex and the degree of hydrolysis (first, second, third or fourth hydrolysis). The main 

drawback of this approach is that it needs a significant amount of experimental data, as 

different equations are built up for each case (section 6.10) . As the amount of data for 

radionuclides is very limited, only a limited amount of radionuclide experimental values are 

included in the correlations. 
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Figure 2-8. Plot showing the charge dependence in the correlation among S°m of first hydroxide complex 

of different cations and the S°m of the corresponding cation, from Shock et al. (1997). Entropy units are 

cal/mol·K. 

2.1.4 Sverjensky et al. (1997) approach 

Sverjensky et al. (1997) suggested a correlation between the entropy of reaction, ∆rSm°, and 

the molar entropies Sm° of the cation and the ligand. The equations described in the original 

publication are applicable to halides, sulphates and a limited number of carbonates for 

monovalent and some divalent or trivalent cations (see Table 6-11). A limited number of data 

for radionuclides were included in the original correlations. 
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Figure 2-9. Correlation of ∆rSm°(for the reaction corresponding to addition of a monovalent ligand to a 

divalent cation) with the standard partial molar entropy of the cation, from Sverjensky et al. (1997). 

Entropy units are cal/mol·K. 

 

2.2 Solid compounds 

Methods to estimate the enthalpy or entropy data of solid compounds are limited. Most of them 

are based on empirical observations and usually focused on specific groups of elements.  

One of the most widespread approaches for the estimation of entropies is the methodology 

developed by Latimer (Latimer, 1951; Latimer, 1952). The method described in Latimer (1951, 

1952) to estimate the entropy of a solid salt is based on adding ionic contributions of the 

negative and positive ions. The calculated entropies may vary significantly depending on the 

exact set of parameters used in the calculations.  

Although Latimer initially devised the method for ionic compounds, Mills (Mills, 1974) 

demonstrated its applicability to estimate entropies of non-ionic compounds from the analysis 

of experimental data for approximately 300 solids. The coefficients used in the algorithm where 

further revised by Naumov et al. (1974), and Langmuir (1978) modified later some parameters 

to estimate entropies of solid compounds containing the UO2
2+ moiety. Contributions of the 

ions are also reported in Grenthe et al. (1992); those set of parameters, summarized in Figure 

2-10, have been used in several calculations in the present work. 

There is a lack of knowledge on the applicability of these estimation procedures for amorphous 

solid compounds.  
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Figure 2-10. Contributions to entropies of solids to be used with the Latimer approach, as reported in 

Grenthe et al. (1992). Most of these values were originally extracted from Naumov et al. (1971). 
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3 Validation: comparison with data generated in ThermAc  

Most estimation methods allow to calculate missing entropy (Smº or ΔrSmº) data; results of 

those estimations are provided in the form of tables in section 7. Once the missing entropy 

data have been estimated, the values of the enthalpy of reaction (∆rHm°) can be internally 

calculated using Eq. 1. ∆rHm° is then dependant not only on the estimated entropy values, but 

also on the log K° values used for the internal calculations. 

 

Eq. 1 

 

When the molar enthalpy of reaction (∆rHm
0) has been calculated, the van’t Hoff equation (Eq. 

2) is applied to obtain the stability constants (log KT) at different temperatures studied. 

van’t Hoff 

 

Eq. 2 

 

Those values will be then compared with the experimental results obtained by the ThermAc 

partners using different experimental approaches, such as solubility studies (e.g. Endrizzi et 

al. 2018) or TRLFS experiments (e.g. Skerencak-Fech et al. 2014). Results of those 

comparisons are provided in the sections below. 

3.1 Nd(III)-Hydrolysis 

The solubility of Nd(OH)3(cr) in NaCl media at temperatures up to 80°C was studied by KIT-

INE in the context of ThermAc; part of these data are under publication. 

In order to estimate missing entropy data for aqueous neodymium hydroxides and chlorides, 

four different approaches were applied: 

 The Langmuir approach, using the equations reported in Duro et al. (2012) (section 

2.1.2).  

 The Baes and Mesmer approach, using the equations updated in present work (section 

2.1.1).  

 The original equations from Shock et al. (1997) (section 6.10). 

 The original equations from Sverjensky et al. (1997) (section 6.11). 

𝛥𝑟𝐺𝑚
0 = 𝛥𝑟𝐻𝑚

0 − 𝑇𝛥𝑟𝑆𝑚
0  
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In order to estimate missing entropy data for the solid neodymium hydroxide, two different 

approaches were applied: 

 Latimer’s approach (with the numerical values reported in Grenthe et al. 1992, see 

section 2.2).  

 Konings (2001) approach (section 6.13).  

The different tests performed are summarized in Table 3-1. The estimated values, together 

with the stability constants used in the calculations, are summarized in Table 7-1.  

Table 3-1. Summary of tests applied in the calculations for Nd(OH)3(cr) solubility. 

 Aqueous Solid 

Test A 12DUR/GRI 51LAT 

Test B 97SHO/SAS & 97SVE/SHO 51LAT 

Test C 81BAE/MES & 97SVE/SHO 51LAT 

Test D 12DUR/GRI 01KON 

 

As shown in Figure 3-1, results obtained using the Shock et al. (1997) approach (test B) are 

different from those calculated with Langmuir (1978) or Baes and Mesmer (1981) approaches, 

especially at pH values higher than 8. However, no reliable experimental data are available 

above this pH (Figure 3-2). 

 

 

Figure 3-1. Calculated solubility for Nd(OH)3(cr) at 0.5M NaCl at 25°C (blue line) and at 80°C (orange, 
brown and red lines) with the different approaches described in the text.  
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Figure 3-2. Solubility for Nd(OH)3(cr) at 80°C, at different ionic strengths. Symbols: experimental data. 

Lines: calculated values with approaches “A” and “B” described in the text. 

3.2 Cm(III)-Hydrolysis 

The possible formation of Cm(OH)4
- species in the alkaline pH range was investigated using 

Time-resolved Laser-induced Fluorescence Spectroscopy (TRLFS) by the University of 
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Heidelberg and KIT-INE at temperatures up to 80°C and ionic strengths up to 5 m. In the 

TRLFS results, strong evidences of the formation of Cm(OH)4
- species are not seen. 

Specifically, the concentration of this species in the sample is calculated to be below 10-11 m. 

In order to estimate the missing entropy data for aqueous curium hydroxides, two different 

approaches were applied: 

 The Langmuir approach, using the equations reported in Duro et al. (2012) (section 

2.1.2).  

 The original equations from Shock et al. (1997) (section 6.10). 

The possible precipitation of curium hydroxide solids in the experiments was also evaluated. 

In order to estimate missing entropy data for the solid, the Latimer’s approach (with the 

numerical values reported in Grenthe et al. 1992, see section 2.2) was applied.  

The tests performed are summarized in Table 3-2. The estimated values, together with the 

stability constants used in the calculations, are summarized in Table 7-2.  

Table 3-2. Summary of tests applied in the calculations for Nd(OH)3(cr) solubility. 

 Aqueous Solid 

Test A 12DUR/GRI 51LAT 

Test B 97SHO/SAS  51LAT 

 

Using the estimated values, calculations indicate that the contribution of the species Cm(OH)4
- 

under the hyperalkaline conditions and 25 and 80°C of the experiments may vary between 

58% and 25% (depending on the method used and of the temperature) and that total Cm(OH)4
-

amount is above 10-11 m. An example for 1m NaCl is shown in Figure 3-3. 

The estimated values are not in agreement with the TRLFS results. Nevertheless, calculations 

also indicate that a solid may precipitate in the experiments (solid bars in Figure 3-3); this is a 

handicap in order to ensure that the comparisons between experimental data and calculations 

are accurate. 
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Figure 3-3. Calculated Cm(OH)4
- molality at different temperatures, estimated with the approaches “A” 

(orange columns) and “B” (green columns) described in the text. Solid bars indicate those cases for 

which precipitation of Cm(OH)3(s) is expected according to the calculations.  

3.3 Cm(III)-Chloride 

Data for Cm-Cl formation, specifically for Reaction 3-1, was generated by University of 

Heidelberg and KIT-INE (Skerencak-Fech et al. 2014, Koke et al. 2019). log β°2(T) values for 

Reaction 3-1 were determined by TRLFS in different ionic media, and ∆rHm° and ∆rSm° were 

determined by fitting the temperature dependency of the stability constant using the Van’t Hoff 

equation. 

Cm3+ + 2Cl- ↔ CmCl2+ Reaction 3-1 
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In order to estimate entropy data for CmCl2+, the Langmuir approach, using the equations 

reported in Duro et al. (2012) (section 2.1.2), has been applied1 . The estimated values, 

together with the stability constants used in the calculations, are summarized in Table 7-3.  

As explained before, once the missing entropy data have been estimated, the values of the 

enthalpy of reaction (∆rHm°) are dependant not only on the estimated entropy values, but also 

on the log K° values used for the internal calculations. The comparison shown in Figure 3-4 

uses the log K° values Skerencak-Fech et al. (2014) (this is, log K° = -0.81±0.35 for Reaction 

3-1) in the calculations. 

As shown in Figure 3-4, the estimated values do not provide an accurate result. The reason 

for this disagreement is not clear; it may be related to the fact that CmCl2+ is a weak complex 

(-1<log K°<1), and thus, its associated thermodynamic data are very sensitive to small 

variations in the calculations. The large uncertainty associated to the estimated values may be 

a handicap in those cases. 

 

_____________ 

 

1 Sverjensky et al. (1997) approach is also applicable, but it requires data for the formation of CmCl2+, not available 

in the publication discussed above. 
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Figure 3-4. ΔrHm° values for CmCl2+ formation. Experimental value from Skerencak-Fech et al. (2014) 

(dashed bar) is compared with estimated value using Duro et al. (2012) approach (solid bar). 

 

3.4 Ln(III)-Phosphate 

The complexation of Eu(III) and Cm(III) with aqueous phosphates was investigated by HZDR 

using laser-induced luminescence spectroscopy (Jordan et al. 2018). The experiments 

showed that upon increasing the temperature (25−80 °C), the formation of both EuH2PO4
2+ 

and CmH2PO4
2+ (Reaction 3-2 and Reaction 3-3) were favoured. Using the van’t Hoff equation, 

∆rHm° and ∆rSm° values were derived. 

Eu3+ + H2PO4- ↔ EuH2PO4
2+ Reaction 3-2 

Cm3+ + H2PO4- ↔ CmH2PO4
2+ Reaction 3-3 

 

Langmuir (1979) (section 6.6) summarized different approaches in order to estimate missing 

thermodynamic data. Two of the approaches suggested in Langmuir (1979), applicable to 

estimation of entropy data for aqueous fluorides, sulphates and phosphates, were tested: 

 The simple electrostatic model (section 6.6)  

 The Fuoss model (section 6.6)  

The methods are based on the correlation between the Gibbs energy of reaction or the 

entropies of reaction and z+z-/d, were z is the charge of the metal or the ligand and d is the 

distance between the cation and the ligand in the complex. Thus, the approaches suggested 

can be used to estimate both the log Kº at 25°C and the temperature dependence of the 

stability constants.  

The estimated stability and entropy values were used to calculate the corresponding enthalpy 

of reaction values (Table 7-6 and Table 7-4 in the appendix). With those data, the results 

shown in Figure 3-5 and Figure 3-6 were obtained.  

As seen in Figure 3-5, the electrostatic model suggested by Langmuir (1979) allows to estimate 

log K° values (stability constants) that are similar to the experimental data obtained by Jordan 

et al. (2018), which provides an indication of the suitability of this approach. On the contrary, 

the Fuoss model does not allow a reasonable prediction of the stability values. 
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(a) 

 (b) 

Figure 3-5. Stability constants for (a) EuH2PO4
2+ and (b) CmH2PO4

2+. Experimental values (dashed 
bars) are compared with estimated values (solid bars) using the electrostatic model or the Fuoss 
model.  

 

Even if results for the estimation of stability constants are reasonable, the electrostatic and 

Fuoss models may have a limited application to estimate the effect of temperature on trivalent 

phosphate complexes, as seen in Figure 3-6. This may be related to the lack of adequate 

experimental data for the phosphate system in order to calibrate the model. 
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 (a) 

 (b) 

Figure 3-6. Enthalpy of reaction for (a) EuH2PO4
2+ and (b) CmH2PO4

2+ (b). Experimental values 
(dashed bars) are compared with estimated values (solid bars) using the electrostatic model or the 
Fuoss model.  

 

Additional studies by HZDR deal with the formation of Cm(H2PO4)2
+ and Cm(HPO4)+ and the 

effect of temperature on those species. However, it is not clear how the simple electrostatic 

model or the Fuoss model could be extended to 1:2 complexes. Furthermore, the application 

of the simple electrostatic model or the Fuoss model to Eu(HPO4)+ or Cm(HPO4)+ complexes 

is limited due to the lack of data for HPO4
2- radii in the literature. 

3.5 Np(V)-Sulphate 

Np(V)-sulphate formation was studied up to 85°C by University of Heidelberg and KIT-INE 

(Maiwald et al. 2018) using absorption spectroscopy. A single complex species (NpO2(SO4)-) 

-10

-5

0

5

10

15

20

25

Jordan et al. (2018) Electrostatic model Fuoss model

∆
rH

m
 

(k
J/

m
o

l·
K)

Eu3+ + H2PO4
- = EuH2PO4

2+

-10

-5

0

5

10

15

20

25

Jordan et al. (2018) Electrostatic model Fuoss model

∆
rH

m
 

(k
J/

m
o

l·
K)

Cm3+ + H2PO4
- = CmH2PO4

2+



ThermAc – Estimations   

D-28 

 

was identified by peak deconvolution of the absorption spectra. Fitting the data according to 

the integrated Van`t Hoff equation yielded ∆rHm° and ∆rSm° values for Reaction 3-4. 

Enthalpy data for NpO2(SO4)- were also available in Guillaumont et al. (2003) and Xia et al. 

(2006); those data have been used for comparison purposes. 

NpO2
+ + SO4

2- ↔ NpO2(SO4)-  Reaction 3-4 

 

In order to estimate entropy data for NpO2(SO4)-, two different approaches were applied: 

 The Langmuir approach, using the equations updated in present work (section 2.1.2).  

 The original equations from Sverjensky et al. (1997) (section 6.11). 

The estimated entropy values were used to calculate the corresponding enthalpy of reaction 

values, as shown in Table 7-7. With those data, the results shown in Figure 3-7 were obtained. 

The results obtained with the Langmuir approach agree reasonably well with the experimental 

data.  

 

Figure 3-7. Enthalpy of reaction for NpO2(SO4)-. Experimental values (dashed bars) are compared 
with estimated values (solid bars).  
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3.6 U(VI)-Hydrolysis 

The solubility of uranium in NaCl media at temperatures up to 80°C was studied by KIT-INE in 

the context of ThermAc; part of these experimental data are published in Endrizzi et al. (2018). 

Two different solids (schoepite and sodium uranate) were used as starting materials in the 

experiments at acidic or alkaline pH values, respectively. 

In order to estimate missing entropy data for aqueous species such as UO2(OH)3
- and 

UO2(OH)4
2-, the Langmuir approach, using the equations updated in present work, was applied 

(section 2.1.2).  

Solubility and enthalpy data for sodium uranate used in the calculations are the ones reported 

in Endrizzi et al. (2018). Entropy data for schoepite was estimated using the Latimer’s 

approach (with the numerical values reported in Grenthe et al. 1992, see section 2.2). The 

estimated values, together with the stability constants used in the calculations, are summarized 

in Table 7-8. 

The comparison between estimated data and experimental results, summarized in Figure 3-8, 

is satisfactory; the Langmuir approach seems to provide adequate results for this system. 
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Figure 3-8. Solubility for schoepite (below pH 7) and sodium uranate (above pH 7) at different 

temperatures. Black symbols: Solubility data at 25°C from Altmaier et al. (2017). Blue symbols: Solubility 

data at 25°C from Endrizzi et al. (2018); this solid had been previously equilibrated at 80°C to exclude 

effects related to crystallinity changes. Red symbols: Solubility data at 80°C from Endrizzi et al. (2018). 

Symbols correspond to the experimental data generated by KIT-INE; lines are modelling results using 

the estimations described in the text. 

 

3.7 Th(IV)-OH-carbonate 

The chemistry of Th(IV) at elevated temperatures, and specifically the ternary system Th(IV)-

OH-CO3, is being experimentally investigated at KIT-INE.  

Several Th(IV)-OH-CO3 species can be expected in neutral to alkaline solutions of low to high 

carbonate concentrations at room temperature (Altmaier et al. 2005). The most likely species 

are identified as black and grey fields in Figure 3-9. 
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Figure 3-9. Possible mononuclear thorium carbonate complexes (1yz) = An(OH)y(CO3)z
4−y−2z, as 

reported in Altmaier et al. (2005). Black fields indicate the most important species in neutral and 
alkaline solutions of low to high carbonate concentration at room temperature. Grey fields indicate 
further Th(IV) complexes quantified in Altmaier et al. (2005). 

 

As discussed in section 2.1.2, Langmuir and Herman (1980) provided rough estimates for 

monomeric complexes of thorium. However, no anionic species were included in the 

correlation, so it is difficult to extrapolate the curve proposed by the authors to Th-OH-CO3 

species. Thus, we have preferred the approach described in Duro et al (2012), because the 

correlation includes negatively charged complexes such as the limiting complex U(CO3)5
6-, for 

which experimental enthalpy data was available in Grenthe et al. (1984). Nevertheless, it does 

not include any ternary complexes, due to the lack of literature data. The estimated values for 

the aqueous complexes are provided in  

Table 7-9. 

When solubility experiments are performed, it is necessary to estimate the enthalpy for the 

thorium (hydr)oxide solid. As a preliminary approach, we have used the Latimer’s method 

(Latimer 1951), where the entropy is calculated adding empirically estimated ionic 

contributions for the anion (“OH-“ or “O2-“), the cation (“Th4+”) and the number of water 

molecules (“H2O”) in the solid. Thus, using this approach, the entropy will depend on the exact 

formula of the compound, which may be difficult to determine in the case of amorphous solids. 

Using different formulas for the same stability constant provides a preliminary evaluation of the 

uncertainty associated to the calculation. The estimated values are provided in Table 7-10. 
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Estimations can be used for preliminary calculations/blind predictions. Once the experimental 

data are ready, a closer comparison of the experimental versus estimated data will be 

performed in order to evaluate the accuracy of the estimated values. 
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4 Conclusions 

Different numerical approaches to estimate entropy values have been tested by comparing the 

results of the estimations with the experimental data generated within the project (Table 4-1). 

Estimations based on the Langmuir approach (this is, correlations among standard molar 

entropy of the complexes and its charge) have provided satisfactory results for U(VI) hydrolysis 

and Np(V) sulphate systems. The Langmuir approach is simple to apply, extensive and easily 

extended to several elements and ligands not considered in the initial Langmuir’s work. 

Furthermore, it was initially developed for actinides; this is an advantage over other 

approaches, such as the one suggested by Shock et al. (1997), for which the correlations 

where build up mainly with major elements data.  

Langmuir’s approach main drawback is the large uncertainty associated to the entropy 

calculations. This may be a handicap when accurate predictions are needed, for example in 

those cases where thermodynamic data are very sensitive to small variations in the 

calculations. 

On the other hand, the comparison among the different methods evaluated (Langmuir 1978; 

Baes and Mesmer 1981; Shock et al. 1997; Sverjensky et al. 1997; etc) does not allow to 

clearly establish clear trends. As not all methods can be applied to all systems, it is difficult to 

identify if one of the methods systematically overestimates or underestimates the experimental 

results. 
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Table 4-1. Summary of the systems studied and the estimation methods applied in present work for 

aqueous species. 

 

 Hydrolysis Chloride Sulphate Carbonate Phosphate 

Nd(III) 

Langmuir approach (1) 

Baes & Mesmer (1981) 

Shock et al. (1997) 

    

Cm(III) 
Langmuir approach (1) 

Shock et al. (1997) 

Langmuir approach (1) 

Sverjensky et al. (1997) 
  (3) 

Eu(III)     (3) 

Np(V)   
Langmuir 
approach (2) 

  

U(VI) Langmuir approach(2)     

Th(IV)    
Langmuir 
approach(1)? 

 

 
(1) Langmuir approach, using the equation reported in Duro et al. (2012) 
(2) Langmuir approach, using equations updated in present work 
(3) The electrostatic model suggested by Langmuir (1979) allows to successfully estimate stability constants, but 
the results for enthalpy are not accurate 
? The accuracy of the estimation method will be evaluated once the experimental values are available. 

 
In the case of solids, estimations based on the Latimer approach, have provided satisfactory 

results for U(VI) oxides. Once the experimental data for the Th-CO3 system will be ready, a 

closer comparison of the experimental versus estimated data will provide further insights on 

the accuracy of these estimations. 

As demonstrated in the case of the thorium-carbonate system, the use of the different 

estimation approaches has a clear impact in order to improve the design of the experiments. 

Estimations can be used for preliminary calculations and blind predictions, which allows to 

reduce the number of experiments needed to obtain reliable data and to focus the efforts in 

those conditions where temperature is expected to have a more significant impact.  

Furthermore, the comparison of the estimated and experimental data allows to increase the 

confidence in different estimation approaches, specifically in those based on Langmuir (1978) 

for aqueous species and Latimer (1951) for solid phases. These type of exercises are of utmost 

importance when fill in data gaps for actinides, long-lived fission products and relevant matrix 

elements in aquatic systems at temperatures higher than 25°C. Covering those gaps will helps 

the redefiniton of safety margins under repository conditions, using less conservative and more 

realistic approches in the calculations. 
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6 Appendix A: Literature estimation methods 

This Appendix provides information on relevant estimation methods identified in the literature, 

summarized in the form of tables. 

6.1 Powell and Latimer (1951) 

Table 6-1. Technical data sheet for estimation methods: Powell and Latimer (1951). 

Reference 

Powell, R. E. and Latimer, W. M. 1951. The entropy of aqueous solutes. Journal of Chemical Physics, 
19, 1139-1141. 

Related references 

N.A. 

Basis of method 

Standard partial molal entropies of monoatomic ions and of non-electrolytes in aqueous solution are 
represented by empirical expressions that include the charge of the ion, the effective radius and/or 
the molal volume. 

Applicability 

Aqueous complexes: Monoatomic ions and non-electrolytes in aqueous solution. 

Estimated parameters 

Partial molal entropy. 

Main equations 

Monoatomic ions 

S = (3/2)R· ln(M) + 37 - 270Z/r2 

Non-electrolytes 

S = Sint + (3/2)R· ln(M) + 10 - 0.22Vm 

Comments 

Limited applicability in the frame of ThermAc project. The units of the parameters are not clear. 
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6.2 Latimer (1951) 

Table 6-2. Technical data sheet for estimation methods: Latimer (1951). 

Reference 

Latimer, W. M. 1951. Methods of estimating the entropies of solid compounds. Journal of the 
American Chemical Society, 73(4), 1480-1482. 

Related references 

Latimer, W. M. 1952. The oxidation states of the elements and their potentials in aqueous solutions. 
2nd ed. New York, Prentice Hall Inc. 392p. 

Basis of method 

The entropy of any salt is estimated by combining the values reported in the paper for negative ions, 
with the values for the positive ions. The method is then based in adding empirically estimated ionic 
contributions. 

Applicability 

Solids: Ionic solid compounds. 

Estimated parameters 

Entropy of formation, Sm° (cal/mol·°C). 

Main equations 

Sm° (AnXm) (cal/mol·°C) = Contribution [n·(Am+)] + Contribution [m·(Xn-)] 

Contribution of the cation (in cal/mol·°C) 

 

 

Contribution of the anion (in cal/mol·°C) 

 

Comments 

Besides Latimer (1951, 1952), cation and anion contributions are tabulated in other data sources. 
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6.3 Cobble (1953) 

Table 6-3. Technical data sheet for estimation methods: Cobble (1953). 

Reference 

Cobble, J. W. 1953. Empirical considerations of entropy. II. The entropies of inorganic complex ions. 
The Journal of Chemical Physics, 21(9), 1446-1450. 

Related references 

N.A. 

Basis of method 

Partial molal entropies of aqueous complex ions are correlated with the ratio of their charge to 
interatomic distance. 

Applicability 

Aqueous complexes: Inorganic complexes. 

Estimated parameters 

Partial molal entropy. 

Main equations 

Relationship between “corrected” entropy S´ and “normal” Sº 

S´=Sº - nSº(H2O) 

where n is the number of water molecules replaced from the coordinated aquated ion by the 

complexing agent. 

Complexes with monoatomic ions as ligands 

S´=49-99(Z/r12) 

r12=r1+r2, that is the interatomic distance. A value of 1.40Å was considered for OH-. 

Molecularly complexed species 

S´=49-99(Z/r12) 

where r12=(r1+r2)/f. Structural factor f=0.65 

Neutral ions 

S´=132-354/r12 

Comments 

The units of the parameters are not clear. 
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6.4 Helgeson (1978) 

Table 6-4. Technical data sheet for estimation methods: Helgeson (1978). 

Reference 

Helgeson, H. C. 1978. Summary and critique of the thermodynamic properties of rock-forming 
minerals. American Journal of Science, 278, 229. 

Related references 

N.A. 

Basis of method 

Estimation of standard molal entropy of a mineral by writing a reaction between the mineral and other 
minerals of similar structural class, using oxide minerals to balance the reaction. 

Applicability 

Solids: Non-ferrous silicate minerals. 

Estimated parameters 

Entropy of formation, Sm° (cal/mol·°C). 

Main equations 

See the original publication (limited applicability in the context of the present project) 

Comments 

Limited applicability in the present context (difficult to find minerals to write the reaction for which the 
entropy is known). 

 

  



ThermAc – Estimations   

D-44 

 

6.5 Langmuir (1978) 

Table 6-5. Technical data sheet for estimation methods: Langmuir (1978). 

Reference 

Langmuir, D. 1978. Uranium solution-mineral equilibria at low temperatures with applications to 
sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42(6), 547-569. 

Related references 

N.A. 

Basis of method 

Correlation between the entropies of uranium aqueous complexes and the charge of the complexes, 
following a 4th degree empirical polynomial equation. 

Applicability 

Aqueous complexes: Monomeric aqueous uranium complexes. 

Estimated parameters 

Entropy of formation, Sm° (cal/mol·°C). 

Main equations 

 

Figure 6-1. Entropy vs valence for some uranium ions and complexes. Entropies of bracketed 
species are estimated. Other values are based on empirical results (See Langmuir (1978) for details). 

Original equation in the publications: Sºm (cal·mol-1·ºC-1) = 8.3 - 10.55Z - 2.17Z2 + 0.05Z3 - 0.13Z4 

Z is the charge of the complex.  

Comments 

The method was originally developed for monomeric U complexes. It seems to be applicable for 
polynuclear complexes if the value is divided by the number of uranium atoms in the formula. 
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6.6 Langmuir (1979) 

Table 6-6. Technical data sheet for estimation methods: Langmuir (1979). 

Reference 

Langmuir, D. 1979. Techniques of estimating thermodynamic properties for some aqueous 
complexes of geochemical interest, in: Chemical Modeling in Aqueous Systems: Speciation, sorption, 
solubility, and kinetics (Jenne, E.A., ed.), ACS Symp. Ser. 93, American Chemical Society, 
Washington D.C., pp. 353-387. 

Related references 

N.A. 

Basis of method 

Different estimation and correlation techniques are summarized. 

The electrostatic model and the Fuoss model are based on a correlation between the Gibbs energy 
of reaction or the entropies of reaction and z+z-/d, where z is the charge of the metal or the ligand and 
d is the distance between the cation and the ligand in the complex. 

Applicability 

Aqueous fluorides, sulphates and maybe phosphates 

Estimated parameters 

Gibbs energy of reaction, ∆rGm
0. 

Entropy of reaction, ∆rSm°. 

Main equations 

Simple electrostatic model 

∆rG0 (kcal·mol-1) = -4.24·10-8 (z+z-/d) 

ΔrSº = ∆rG0 (-0.0454) 

Fuoss model 

∆rG0 (cal·mol-1) = -29200 -1364 log d3 - 4.241·10-5 (z+z-/d) 

ΔrSº (cal·mol-1·deg-1) = 97.94 + 4.576 log d3 + 19.26·10-8 (z+z-/d) 

Comments 
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6.7 Langmuir and Herman (1980) 

Table 6-7. Technical data sheet for estimation methods: Langmuir and Herman (1980). 

Reference 

Langmuir, D. and Herman, J. S. 1980. The mobility of thorium in natural waters at low temperatures. 
Geochimica et Cosmochimica Acta, 44(11), 1753-1766. 

Related references 

Langmuir, D. 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary 
ore deposits. Geochimica et Cosmochimica Acta, 42(6), 547-569. 

Basis of method 

Correlation between the entropies of thorium aqueous complexes and the charge of the complexes, following 
a 4th degree empirical polynomial equation. 

Applicability 

Aqueous complexes: Thorium aqueous complexes. 

Estimated parameters 

Entropy of formation, Sm° (cal/mol·°C). 

Main equations 

 

 

Figure 6-2. Entropy vs valence for thorium ion and some thorium 
complexes on a monatomic basis. For polymers:  a) Charge of 
complex (x axes) is the charge of complex / number of thorium atoms 
in the polymer; b) Entropy of complex (y axes) is the entropy of 
complex / number of thorium atoms in the polymer. 

Comments 

The equation for the fitting of the data is not provided in the original 
paper. Different fittings result in very different values for the extrapolation 
to anionic complexes, as seen in the example below. 

4th degree: y = 0.07z4 – 0.64z3 – 1.31z2 - 7.90z - 23.34 

2nd degree: y = -3.368z2 - 9.7696z - 4.9269 

 

Figure 6-3. Symbols: entropy vs valence for thorium ion and some 
thorium complexes on a monatomic basis, from Langmuir and Herman 
(1980). Blue lines: fitting of the data using a 4th degree (solid line) or 2nd 

degree (dashed line) polynomial. Entropy in cal/mol·K. 
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6.8 Baes and Mesmer (1981) 

Table 6-8. Technical data sheet for estimation methods: Baes and Mesmer (1981). 

Reference 

Baes Jr, C. F. and Mesmer, R. E. 1981. Thermodynamics of cation hydrolysis. Am. J. Sci. 281(7), 
935-962. 

Related references 

Baes, C. F., and Mesmer, R. E. 1976. Hydrolysis of cations. John Wiley & Sons, New York, London. 

Basis of method 

Dependency on the entropy of the hydrolysis reaction on the log K of hydrolysis and z/d. 

Applicability 

Aqueous complexes: hydroxides. 

Estimated parameters 

Entropy of reaction, ∆rSm° (cal/mol·K). 

Main equations 

First hydrolysis constant 

xMz+ + yH2O = Mx(OH)y
(xz-y) + yH+ 

ΔrSº11=1.772logK11+19.12(z/d) 

Polymerized reaction 

M(OH)(z-1) = (1/y)Mx(OH)y
(xz-y) + (1 – x/y)Mz+ 

ΔrSºxy/y= -17.5 + 16.2(z/d) + [(1+y-x)/y]R·Ln(55.5)  

Successive mononuclear hydrolysis steps  

M(OH)y
(z-y) + H2O = M(OH)y+1

(z-y-1) + H+ 

ΔrSº = -17.8 + 12.2(z-y)  

Comments 
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6.9 Langmuir and Riese (1985) 

Table 6-9. Technical data sheet for estimation methods: Langmuir and Riese (1985). 

Reference 

Langmuir, D. and Riese, A. C. 1985. The thermodynamic properties of radium. Geochimica et 
cosmochimica acta, 49(7), 1593-1601. 

Related references 

N.A. 

Basis of method 

Estimation of radium properties using as a basis the analogy between Ra and other alkaline earth 
elements. 

Applicability 

Aqueous complexes and solids: Radium. 

Estimated parameters 

 

Main equations 

 

Comments 

Not used in the present work. 
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6.10 Shock et al. (1997) 

Table 6-10. Technical data sheet for estimation methods: Shock et al. (1997). 

Reference 

Shock, E. L., Sassani, D. C., Willis, M. and Sverjensky, D. A. 1997. Inorganic species in geologic 
fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide 
complexes. Geochimica et Cosmochimica Acta, 61(5), 907-950. 

Related references 

Shock, E. L., and Helgeson, H. C. 1988. Calculation of the thermodynamic and transport properties 
of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and 
equation of state predictions to 5 kb and 1000 C. Geochimica et Cosmochimica Acta, 52(8), 2009-
2036. 

Basis of method 

Correlation between standard molal entropies Sºm of an aqueous hydroxide complex and the standard 
molal entropy of the corresponding cation. 

Applicability 

Aqueous complexes: hydroxide complexes of monovalent, divalent, trivalent and tetravalent cations. 

Estimated parameters 

Entropy of formation, Sm° (cal/mol·°C). 

Main equations 

Complexes of monovalent cations (M+) 

 First (MOH): Sºcomplex = 1.32·Sºcation-6 

 Second (MO-): Sºcomplex = 1.42·Sºcation-11 

Complexes of divalent cations (M2+) 

 First (MOH+): Sºcomplex = 1.32·Sºcation+24.5 

 Second (MO): Sºcomplex = 1.42·Sºcation+20.5 

 Third (HMO2
-): Sºcomplex = 1.52·Sºcation+15.5 

 Fourth (MO2
2-): Sºcomplex = 1.62·Sºcation+11 

Complexes of trivalent cations (M3+) 

 First (MOH2+): Sºcomplex = 1.32·Sºcation+37 (Ga, In, Tl, Bi);   

                        Sºcomplex = 1.32·Sºcation+62 (Others) 

 Second (MO+): Sºcomplex = 1.42·Sºcation+83 

 Third (HMO2): Sºcomplex = 1.52·Sºcation+123 

 Fourth (MO2
-): Sºcomplex = 1.62·Sºcation+118 

Complexes of tetravalent cations (M4+) 

 First (MOH3+): Sºcomplex = 1.32·Sºcation+74 

 Second (MO2+): Sºcomplex = 1.42·Sºcation+108 

 Third (HMO2
+): Sºcomplex = 1.52·Sºcation+140 

 Fourth (MO2): Sºcomplex = 1.62·Sºcation+135 

 Fifth (HMO3
-): Sºcomplex = 1.72·Sºcation+130 

Comments 

It is not clear if it is applicable to the estimation of trivalent REE and actinides, as those elements 
were not included among the elements used to construct the calibration curves. 
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6.11 Sverjensky et al. (1997) 

Table 6-11. Technical data sheet for estimation methods: Sverjensky et al. (1997). 

Reference 

Sverjensky, D. A.; Shock, E. L. and Helgeson, H. C. 1997. Prediction of the thermodynamic properties 
of aqueous metal complexes to 1000ºC and 5 kb. Geochimica et Cosmochimica Acta 61(7), 1359-
1412. 

Related references 

Sverjensky D. A. 1987. Calculation of the thermodynamic properties of aqueous species and the 
solubilities of minerals in supercritical electrolyte solutions. In Thermodynamics of Earth Materials: 
Rev. Mineral (ed. I. S. E. Carmichael and H. P. Eugster), Vol. 17, pp 177 209. Amer. Mineral. Soc. 

Haas, J. R., Shock, E. L., & Sassani, D. C. 1995. Rare earth elements in hydrothermal systems: 
estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth 
elements at high pressures and temperatures. Geochimica et Cosmochimica Acta, 59(21), 4329-
4350. 

Basis of method 

Correlation between entropy of reaction, ΔSr, and standard molal entropies Sºm of the cation + ligand. 

Applicability 

Aqueous complexes: metal halide, sulphate and carbonate complexes. 

Estimated parameters 

Entropy of reaction, ∆rSm° (cal/mol·K). 

Main equations 

Halides (with monovalent and some divalent cations) 

 ΔrS0 = (aZ·SºL + a’Z)·SºML(y-1) + bZ·SºL + b’Z 

 aZ = 0.016241Z-0.000479 

 a’Z = -0.36097Z+0.3209 

 bZ = 0.32102Z-0.05996 

 b’Z = 8.2198Z-1.557 

Sulphates (with monovalent, divalent and trivalent cations) 

 ΔrSº = αZ,SO4·SºM + βZ,SO4 

 αZ,SO4 = -0.055Z + 0.055 

 βZ,SO4 = 13.84Z+18.16 

Carbonates (limited to some monovalent and divalent cations) 

 ΔrSº = γZ,CO3·SºM + δZ,CO3 

 γZ,CO3 = -1.617Z+0.213 

 δZ,CO3 = 66.82Z+28.67 

Comments 

May be possible to extend the equation for halides to OH- complexes. 



ThermAc – Estimations   

D-51 

 

6.12 Rand and Fuger (2000) 

Table 6-12. Technical data sheet for estimation methods: Rand and Fuger (2000). 

Reference 

Rand, M.H. and Fuger, J. 2000. The thermodynamic properties of the transuranium halides. Part I: 
Neptunium and Plutonium Halides. European Commission Joint Research Centre – Institute for 
Transuranium Elements, Report EUR 17332 EN. 

Related references 

N.A. 

Basis of method 

Relationship of the enthalpy or entropy of formation with the values for analogous actinides. 

Applicability 

Solids: An(III), An(IV), An(V) and An(VI) halides. 

Estimated parameters 

Enthalpy and entropy of formation: ∆fHm° (kJ/mol) and Sm° (J/mol·K). 

Main equations 

Enthalpy of formation 

Correlation between [∆fHm°(AnXn(cr) – ∆fHm°(Ann+(aq)] with the ionic radii of the aqueous Ann+ ion. 

 Entropy of formation 

 Direct average of different analogous actinide solids. 

 Direct analogy with analogous actinide solids. 

 

Comments 

May be applied to other actinides/systems. 
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6.13 Konings (2001) 

Table 6-13. Technical data sheet for estimation methods: Konings (2001). 

Reference 

Konings, R. J. M. 2001. Estimation of the standard entropies of some Am (III) and Cm (III) compounds. 
Journal of nuclear materials, 295(1), 57-63. 

Related references 

N.A. 

Basis of method 

Estimation of standard entropies as the sum of lattice entropy Slat and excess entropy Sexs. 

Applicability 

Solids: Isoelectric trivalent lanthanide and actinide solid compounds (An2O3, An(OH)3, AnF3, AnCl3). 

Estimated parameters 

Entropy of formation: Sm° (J/mol·K). 

Main equations 

Sº = Slat + Sexs 

Comments 

Limited range of applicability as available Slat and Sexs are limited. 
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6.14 Duro et al. (2012) 

Table 6-14. Technical data sheet for estimation methods: Duro et al. (2012). 

Reference 

Duro, L., Grivé, M., Colàs, E., Gaona, X. and Richard, L. 2012. TDB for elevated temperature 
conditions using entropy estimations. In: Proceedings of the International Workshops ABC-Salt (II) 
and HiTAC 2011. Altmaier, M., Bube, C., Kienzler, B., Metz, V., Reed, D.T. (Eds.). KIT Scientific 
reports Nr. KIT-SR 7625. 

Related references 

N.A. 

Basis of method 

The entropy of An and Ln aqueous complexes is related to the charge of the complex by a 4 th 
polynomial function. Boundaries including all data provide uncertainty of ±126 J/mol·K in estimations. 

Applicability 

Aqueous complexes: An and Ln aqueous complexes. 

Estimated parameters 

Entropy of formation: Sm° (J/mol·K). 

Main equations 

 

Figure 6-4. Experimental data available for some actinide and lanthanide aqueous complexes 

(symbols) and fitting of the available experimental data to 4th degree polynomial (curve). 

Fitting function: Sº = 0.0511x4 – 0.0785x3 – 15.588x2 – 50.38x + 33.193 

where x is the charge of the complex 

Comments 

Empirical correlation obtained using An and Ln data from experimental studies. 
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7 Appendix B: Estimated values 

The present section contains tables including the estimated data (mainly entropy data). 

Besides estimated values, other data of interest such as stability constants and internally 

calculated enthalpy values are also provided. 
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7.1 Estimations for Nd(III) system 

Table 7-1: Summary of parameters for Nd (III) system at T=25ºC. 

Species Reaction Log10K0 Ref. 
ESTIMATED 

Sm° 
(J/mol·K)  

∆rHm° 

(KJ/mol) 
(3) 

Method 

Nd(OH)2+ 
Nd3+ + H2O = 

Nd(OH)2+ + H+ 
-7.40 ± 

0.40 
Neck et 

al. (2009) 

-129.729 ± 
126 

44.333 
Duro et al.     
(2012) (1) 

-68.225 (4) 
62.670 ± 
37.339 

Baes and 
Mesmer 
(1981) (2) 

-13.436 ± 
20.900 

79.005 
Shock et al. 

(1997) 

Nd(OH)2
+ 

Nd3+ + 2H2O = 
Nd(OH)2

+ + 2H+ 
-15.70 
± 0.70 

Neck et 
al. (2009) 

-32.802 ± 
126 

99.752 
Duro et al.      
(2012) (1) 

22.498 (4) 
116.240 
± 37.482 

Baes and 
Mesmer 
(1981) (2) 

123.708 ± 
20.900 

146.416 
Shock et al. 

(1997) 

Nd(OH)3 
Nd3+ + 3H2O = 
Nd(OH)3 + 3H+ 

-26.20 
± 0.50 

Neck et 
al. (2009) 

33.193 ± 
126 

158.507 
Duro et al.      
(2012) (1) 

65.469 (4) 
168.130 
± 37.378 

Baes and 
Mesmer 
(1981) (2) 

270.398 ± 
20.900 

229.230 
Shock et al. 

(1997) 

Nd(OH)4
- 

Nd3+ + 4H2O = 
Nd(OH)4

- + 4H+ 
-40.70 
± 0.70 

Neck et 
al. (2009) 

68.114 ± 
126 

230.829 
Duro et al.      
(2012) (1) 

60.688 (4) 
228.615 
± 37.482 

Baes and 
Mesmer 
(1981) (2) 

298.758 ± 
20.900 

299.596 
Shock et al. 

(1997) 

NdCl2+ Nd3+ + Cl- = NdCl2+ 
0.24 ± 
0.03 

Neck et 
al. (2009) 

-129.729 ± 
126 

4.704 
Duro et al.     
(2012) (1) 

-61.471 (4) 
25.055 ± 

6.234 
Sverjensky 
et al. (1997) 

NdCl2+ Nd3+ + 2Cl- = NdCl2+ 
-0.74 ± 

0.05 
Neck et 

al. (2009) 

-32.802 ± 
126 

22.321 
Duro et al.      
(2012) (1) 

27.139 (4) 
40.192 ± 

6.238 
Sverjensky 
et al. (1997) 

Nd(OH)3(cr) 
Nd(OH)3(cr) + 3H+ = 

Nd3+ + 3H2O 
17.68 ± 

0.26 
(5) 

95.814 -128.545 
Latimer 
(1951) 

131.620 -139.221 
Konings 
(2001b) 

 

(1) Enlarged Langmuir (1978) method as reported in Duro et al. (2012). 
(2) Re-evaluated Baes and Mesmer (1981) method applied in present work. 
(3) Internally calculated from Log Kº and Smº. 
(4) Internally calculated from Log Kº and ΔrSmº. 
(5) Data from KIT solubility results (Endrizzi et al. 2018, data not published) 
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7.2  Estimations for Cm(III) system 

Table 7-2: Summary of parameters for Cm(III)-H2O system at T=25ºC. 

Species Reaction Log10K0 Ref. 
ESTIMATED 

Sm° 
(J/mol·K) 

∆rHm° 

(KJ/mol) 
(3) 

Method 

Cm(OH)2+ 
Cm3+ + H2O = 

Cm(OH)2+ + H+ 
-7.20 ± 

0.50 
Guillaumont 
et al. (2003) 

-129.729 ± 
126 

38.510 ± 
37.793 

Duro et al.      
(2012) (1) 

-52.525 ± 
125 (4) 

61.528 ± 
37.378 

Baes and 
Mesmer 
(1981) (2) 

7.288 ± 
20.900 

79.362 ± 
7.474 

Shock et al. 
(1997) 

Cm(OH)2
+ 

Cm3+ + 2H2O = 
Cm(OH)2

+ + 2H+ 
-15.10 ± 

0.70 
Guillaumont 
et al. (2003) 

-32.802 ± 
126 

91.646 ± 
37.896 

Duro et al.     
(2012) (1) 

38.198 ± 
125 (4) 

112.815 
± 37.482 

Baes and 
Mesmer 
(1981) (2) 

146.002 ± 
20.900 

144.956 
± 7.980 

Shock et al. 
(1997) 

Cm(OH)3 
Cm3+ + 3H2O = 
Cm(OH)3 + 3H+ 

-26.20 ± 
0.50 

Guillaumont 
et al. (2003) 

33.193 ± 
126 

153.826 
± 37.793 

Duro et al.     
(2012) (1) 

81.169 ± 
125 (4) 

168.130 
± 37.378 

Baes and 
Mesmer 
(1981) (2) 

294.262 ± 
20.900 

231.664 
± 7.474 

Shock et al. 
(1997) 

Cm(OH)4
- 

Cm3+ + 4H2O = 
Cm(OH)4

- + 4H+ 
-40.70 ± 

0.70 
Guillaumont 
et al. (2003) 

68.114 ± 
126 

226.148 
± 37.896 

Duro et al.     
(2012) (1) 

76.388 ± 
125 (4) 

228.615 
± 37.482 

Baes and 
Mesmer 
(1981) (2) 

324.192 ± 
20.900 

302.498 
± 7.980 

Shock et al. 
(1997) 

Cm(OH)3(am) 
Cm(OH)3(am) + 

3H+ = Cm3+ + 3H2O 
-16.90 ± 

0.80 
Neck et al. 

(2009) 
96.232 119.537 

Latimer 
(1951) 

   
(1) Enlarged Langmuir (1978) method as reported in Duro et al. (2012). 
(2) Re-evaluated Baes and Mesmer (1981) method applied in present work. 
(3) Internally calculated from Log Kº and Smº. 
(4) Internally calculated from Log Kº and ΔrSmº. 
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Table 7-3: Summary of parameters for Cm(III)-Cl-H2O system at T=25ºC. 

Species Reaction Log10K0 Ref. 
Sm° 

(J/mol·K) 
∆rHm° 

(KJ/mol) 
Method 

CmCl2+ 
Cm3+ + Cl- = 

CmCl2+  
0.24 ± 
0.03 

Guillaumont et al. 
(2003) 

-129.729 ± 
126 

0.023 ± 
37.685 (3) 

Duro et al.    
(2012) (1) 

-45.281 ± 
23.170 (2) 

25.195 ± 
6.234 (3) 

Sverjensky et 
al. (1997) 

CmCl2+ 
Cm3+ + 2Cl- = 

CmCl2+ 

-0.74 ± 
0.05 

Guillaumont et al. 
(2003) 

-32.802 ± 
126 

17.640 ± 
37.686 (3) 

Duro et al.    
(2012) (1) 

46.100 ± 
25.267 (2) 

41.165 ± 
6.923 (3) 

Sverjensky et 
al. (1997) 

-0.81 ± 
0.35 (4) 

Skerencak-Frech 
et al. (2014) 

-32.802 ± 
126 

18.040 ± 
37.738 

Duro et al.    
(2012) (1) 

90.827 ± 
34.665 (5) 54.9 ± 4.5 

Skerencak-
Frech et al. 

(2014), 
experimental  

-1.16 ± 
0.10 (4) 

Koke et al. (2019) 
102.909 ± 
30.950 (5) 

60.5 ± 1.5 
Koke et al. 

(2019), 
experimental 

 

(1) Enlarged Langmuir (1978) method as reported in Duro et al. (2012). 
(2) Internally calculated from Log Kº and ΔrSmº. 
(3) Internally calculated from Log Kº and Smº. 
(4) Internally calculated from ΔrHmº and ΔrSmº. 
(5) Internally calculated from ΔrSmº. 

 

Table 7-4: Summary of parameters for Cm(III)-PO4 system at T=25ºC. 

Species Reaction 

ESTIMATED 

∆rGm° 

(kJ/mol) 

ESTIMATED 
∆rSm° 

(J/mol·K)  
Log10K0 

∆rHm° 

(KJ/mol) 
(4) 

Method 

Cm(H2PO4)2+ 
Cm3+ + H2PO4

- 
= Cm(H2PO4)2+  

-15.887 72.126 2.78 5.618 
Electrostatic 

model (1) 

-10.085 52.599 1.77 5.597 
Fuoss 

model (2) 

 
(1) Electrostatic model from Langmuir (1979).    
(2) Fuoss model from Langmuir (1979).    
(3) Internally calculated from ∆rGm°.    
(4) Internally calculated from ∆rGm° and ΔrSmº. 
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7.3 Estimations for Eu(III) system 

Table 7-5: Summary of parameters for Eu(III)-Cl-H2O system at T=25ºC. 

Species Reaction Log10K0 Ref. 
ESTIMATED 

Sm° 
(J/mol·K) 

∆rHm° 

(KJ/mol) 
(3) 

Method 

Eu(OH)2+ 
Eu3+ + H2O = 
Eu(OH)2+ + H+ 

-7.80 ± 
0.40 

Spahiu 
and 

Bruno 
(1995) 

-129.729 ± 
126 

51.104 ± 
37.676 

Duro et al. 
(2012) (1) 

-83.277 ± 
125 (4) 

64.953 ± 
37.339 

Baes and 
Mesmer 
(1981) (2) 

33.305 ± 
20.900  

79.852 ± 
6.858 

Shock et al. 
(1997) 

Eu(OH)2
+ 

Eu3+ + 2H2O = 
Eu(OH)2

+ + 2H+ 

-15.70 ± 
0.70 

Neck et 
al (2007) 

-32.802 ± 
126 

104.240 ± 
37.818 

Duro et al. 
(2012) (1) 

7.446 ±   
125 (4) 

116.240 ± 
37.482 

Baes and 
Mesmer 
(1981) (2) 

102.334 ± 
20.900  

144.531 ± 
7.602 

Shock et al. 
(1997) 

Eu(OH)3 
Eu3+ + 3H2O = 
Eu(OH)3 + 3H+ 

-26.20 ± 
0.50 

Neck et 
al (2007) 

33.193 ± 
126 

162.995 ± 
37.715 

Duro et al. 
(2012) (1) 

50.417 ± 
125 (4) 

168.130 ± 
37.378 

Baes and 
Mesmer 
(1981) (2) 

247.519 ± 
20.900  

226.896 ± 
7.069 

Shock et al. 
(1997) 

Eu(OH)4
- 

Eu3+ + 4H2O = 
Eu(OH)4

- + 4H+ 

-40.70 ± 
0.70 

Neck et 
al (2007) 

68.114 ± 
126 

235.317 ± 
37.818 

Duro et al. 
(2012) (1) 

45.636 ± 
125 (4) 

228.615 ± 
37.482 

Baes and 
Mesmer 
(1981) (2) 

274.374 ± 
20.900  

296.814 ± 
7.602 

Shock et al. 
(1997) 

EuCl2+ 
Eu3+ + Cl- = 

EuCl2+  
0.76 ± 0.40 

Luo and 
Byrne 
(2001) 

-129.729 ± 
126 

6.223 ± 
37.676 

Duro et al. 
(2012) (1) 

-77.003 ± 
21.691 (4) 

21.944 ± 
6.636 

Sverjensky 
et al. (1997) 

EuCl2+ 
Eu3+ + 2Cl- = 

EuCl2+ 

-0.05 ± 
1.00 

Spahiu 
and 

Bruno 
(1995) 

-32.802 ± 
126 

22.870 ± 
38.038 

Duro et al. 
(2012) (1) 

8.918 ± 
21.694 (4) 

35.309 ± 
8.450 

Sverjensky 
et al. (1997) 

Eu(OH)3(am) 
Eu(OH)3(am) + 
3H+ = Eu3+ + 

3H2O 

-17.60 ± 
0.84 

Diakonov 
et al 

(1998) 

96.650 132.826 
Latimer 
(1951) 

120.060 139.805 
Konings 
(2001b) 

 

1) Enlarged Langmuir (1978) method as reported in Duro et al. (2012).   (2) Re-evaluated Baes and Mesmer 
(1981) method applied in p.w.  (3) Internally calc. from Log Kº and Smº.  (4) Internally calc. from Log Kº and ΔrSmº. 
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Table 7-6: Summary of parameters for Eu(III)-PO4 system at T=25ºC. 

Species Reaction 

ESTIMATED 

∆rGm° 

(kJ/mol) 

ESTIMATED 
∆rSm° 

(J/mol·K)  
Log10K0 

∆rHm° 

(KJ/mol) 
(4) 

Method 

Eu(H2PO4)2+ 
Eu3+ + H2PO4

- = 
Eu(H2PO4)2+  

-15.471 70.239 2.71 5.471 
Electrostatic 

model (1) 

-9.866 51.373 1.73 5.450 
Fuoss 

model (2) 

 
(1) Electrostatic model from Langmuir (1979).    
(2) Fuoss model from Langmuir (1979). 
(3) Internally calculated from ∆rGm°. 
(4) Internally calculated from ∆rGm° and ΔrSmº. 
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7.4 Estimations for Np(V) system 

Table 7-7: Summary of parameters for Np (V) system at T=25ºC. 

Species Reaction Log10K0 Ref. 
ESTIMATED 

Sm° 
(J/mol·K) 

∆rHm° 

(KJ/mol) 
(3) 

Method 

NpO2(OH) 
NpO2

+ + H2O = 
NpO2(OH) + H+ 

-11.3 ± 
0.70 

Lemire et 
al. (2001) 

38.126 ± 100  
68.698 ± 
30.250 

Langmuir  

(1978) (1) 

-2.954 ± 125 
(4) 

56.450 ± 
37.482  

Baes and 
Mesmer 
(1981) (2) 

NpO2(OH)2
- 

NpO2
+ + 2H2O = 

NpO2(OH)2
- + 2H+ 

-23.6 ± 
0.50 

Lemire et 
al. (2001) 

71.141 ± 100  
127.895 ± 

30.121 

Langmuir  

(1978) (1) 

 -7.704 ± 125 
(4) 

104.387 ± 
37.378 

Baes and 
Mesmer 
(1981) (2) 

NpO2Cl 
NpO2

+ + Cl- = 
NpO2Cl  

-0.93 ± 
0.06 

Neck et al. 
(1994) 

38.126 ± 100  
13.487 ± 
29.987  

Langmuir  

(1978) (1) 

 -13.604 ± 
23.483 (4) 

-1.937 ± 
6.241 

Sverjensky 
et al. 

(1997) 

NpO2(SO4)- 
NpO2

+ + SO4
- = 

NpO2(SO4)- 
0.44 ± 
0.60 

Lemire et 
al. (2001) 

71.141 ± 100  
26.870 ± 
30.181 

Langmuir  

(1978) (1) 

-30.504 ± 
23.486 (4) 

-3.436 ± 
7.110 

Sverjensky 
et al. 

(1997) 
 

(1) Enlarged Langmuir (1978) method developed in present work. 
(2) Re-evaluated Baes and Mesmer (1981) method applied in present work. 
(3) Internally calculated from Log Kº and Smº. 
(4) Internally calculated from Log Kº and ΔrSmº. 
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7.5 Estimations for U(VI) system 

Table 7-8: Summary of parameters for U(VI) system at T=25ºC. 

Species Reaction Log10K0 Ref. 
ESTIMATED 

Sm° 
(J/mol·K) 

∆rHm° 

(KJ/mol) 
(2) 

Method 

UO2(OH)2 
UO2

2+ + 2H2O = 
UO2(OH)2 + 2H+  

-12.15 
± 0.07 

Guillaumont 
et al. (2003) 

66.749 ± 
130 

76.821 ± 
38.772 

Langmuir 
(1978) (1) 

UO2(OH)3
- 

UO2
2+ + 3H2O = 

UO2(OH)3
- + 3H+  

-20.70 
± 0.4 

Altmaier et 
al. (2017) 

105.513 ± 
130 

116.326 
± 38.837 

Langmuir 
(1978) (1) 

UO2(OH)4
2- 

UO2
2+ + 4H2O = 

UO2(OH)4
2- + 4H+ 

-31.90 
± 0.2 

Altmaier et 
al. (2017) 

111.879 ± 
130 

161.298 
± 38.787 

Langmuir 
(1978) (1) 

(UO2)3(OH)4
2+ 

3UO2
2+ + 4H2O = 

(UO2)3(OH)4
2+ + 4H+ 

-11.90 
± 0.30 

Grenthe et 
al. (1992) 

-346.191 ± 
130 

-30.879 
± 38.890 

Langmuir 
(1978) (1) 

(UO2)4(OH)7
+ 

4UO2
2+ + 7H2O = 

(UO2)3(OH)4
2+ + 7H+ 

-21.90 
± 1.00 

Grenthe et 
al. (1992) 

-26.745 ± 
130 

88.156 ± 
39.341 

Langmuir 
(1978) (1) 

UO3:2H2O 
UO3:2H2O + 2H+ = 

UO2
2+ + 3H2O 

5.35 ± 
0.13 

Altmaier et 
al. (2004) 

-186.600 ± 
1.940 

-52.884 
± 1.298 

Latimer 
(1951) 

 

(1) Enlarged Langmuir (1978) method developed in present work. 
(2) Internally calculated from Log Kº and Smº. 
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7.6 Estimations for Th(IV) system 

 

Table 7-9: Summary of parameters for Th (IV) system at T=25ºC. 

                  

                         (1) Enlarged Langmuir (1978) method as reported in Duro et al. (2012). 
                         (2) Internally calculated from Log Kº and Smº. 

  

Species Reaction Log10K0 Ref. 
ESTIMATED ∆rHm° (2) 

Method 
Sm° (J/mol·K) (KJ/mol) 

Th(CO3)5
6- 

Th4+ + 5CO3
2- = 

Th(CO3)5
6- 31.00±0.70 

Rand et 
al. (2009) 

-141.433±  
126.000 

-18.432± 
38.108 

Duro et al. 
(2012) (1) 

Th(OH)(CO3)4
5- 

Th4+ + 4CO3
2- + H2O = 

Th(OH)( CO3)4
5- + H+ 21.60±0.50 

Rand et 
al. (2009) 

-62.107±   
126.000 

23.112±   
37.995 

Duro et al. 
(2012) (1) 

Th(OH)2(CO3)2
2- 

Th4+ + 2CO3
2- + 2H2O = 

Th(OH)2(CO3)2
2- + 2H+ 8.80±0.50 

Rand et 
al. (2009) 

73.167±   
126.000 

85.835±   
37.981 

Duro et al. 
(2012) (1) 

Th(OH)2(CO3)(aq) 
Th4+ + CO3

2- + 2H2O = 
Th(OH)2(CO3)(aq) + 2H+ 2.50±0.60 

Rand et 
al. (2009) 

33.193±   
126.000 

94.970±   
38.024 

Duro et al. 
(2012) (1) 

Th(OH)3(CO3)- 
Th4+ + CO3

2- + 3H2O = 
Th(OH)3(CO3)- + 3H+ -3.70±0.70 

Rand et 
al. (2009) 

68.145±   
126.000 

119.925±   
38.080 

Duro et al. 
(2012) (1) 

Th(OH)4(CO3)2- 
Th4+ + CO3

2- + 4H2O = 
Th(OH)4(CO3)2- + 4H+ 

-
15.60±0.60 

Rand et 
al. (2009) 

73.167±   
126.000 

168.492±   
38.024 

Duro et al. 
(2012) (1) 

Th(OH)4(aq) 
Th4+ + 4H2O = 
Th(OH)4(aq) + 4H+ 

-
17.40±0.70 

Rand et 
al. (2009) 

33.193±   
126.000 

151.941±   
38.079 

Duro et al. 
(2012) (1) 
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Table 7-10: Summary of parameters and estimated values for different Th solids. Using different formulas 

for the same solid allows to estimate the uncertainty associated to the calculations. 

Solid Reaction Log Kº Ref. 
ESTIMATED ∆rHm° (2) 

Method 
Sm° (J/mol·K) (KJ/mol) 

Th(OH)4(s) 
Th4+ + 4OH- = 
Th(OH)4(s) 

50.30±1.00 (3) 143.326±75.000 
-105.267±   

23.566 
Latimer 
(1951) (1) 

ThO2:2H2O 
Th4+ + 4OH- = 
ThO2:2H2O 

50.30±1.00 (3) 158.526±75.000 
-100.735±   

23.566 
Latimer 
(1951) (1) 

ThO2:H2O 
Th4+ + 4OH- = 
ThO2:H2O + H2O 

50.30±1.00 (3) 113.826±75.000 
-93.207±   
23.566 

Latimer 
(1951) (1) 

ThO2(s) 
Th4+ + 4OH- = 
ThO2(s) + 2H2O 

50.30±1.00 (3) 69.126±75.000 
-85.678±   
23.566 

Latimer 
(1951) (1) 

 

                         (1) Latimer approach (see text). 
                         (2) Internally calculated from Log Kº and Smº.  
                         (3) Preliminary value from KIT; to be updated after new experiments are completed. 
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8 Appendix C: Other relevant data 

Thermodynamic data for reference states and master species used in the calculations. 

Table 8-1: Summary of thermodynamic parameters for reference states. 

Species ∆fGm° (KJ/mol) ∆rHm° (KJ/mol) Sm° (J/mol·K) Reference 

Nd(cr) 0.000 ± 0.000 0.000 ± 0.000 71.090 ± 4.180 Robie et al. (1979) 

Cm(cr) 0.000 ± 0.000 0.000 ± 0.000 70.800 ± 3.000 Konings (2001a) 

Eu(cr) 0.000 ± 0.000 0.000 ± 0.000 77.780 ± 3.010  Wagman et al. (1982) 

Th(cr) 0.000 ± 0.000 0.000 ± 0.000 52.640 ± 0.500 Rand et al. (2009) 

Np(cr) 0.000 ± 0.000 0.000 ± 0.000 50.460 ± 0.800 Lemire et al. (2001) 

U(cr) 0.000 ± 0.000 0.000 ± 0.000 50.200 ± 0.200 Guillaumont et al. (2003) 

 

Table 8-2: Summary of thermodynamic parameters for master species. 

Species ∆fGm° (KJ/mol) (1) ∆rHm° (KJ/mol) Sm° (J/mol·K) Reference 

Nd3+ -671.82 -696.200 -206.700 
Cox et al.    

(1989) 

Cm3+ -595.388 ± 6.759 -615.000 ± 6.000 -191.000 ± 10.000 
Konings     
(2001a) 

Eu3+ -574.463 ± 1.600 -605.325 ± 2.521 -221.752 ± 5.800 
Johnson et al. 

(1992) 

Th4+ -704.783 ± 5.298 -768.700 ± 2.300  -423.100 ± 16.000 
Rand et al. 

(2009) 

NpO2
+ -907.765 ± 5.628 -978.181 ± 4.629 -45.904 ± 10.706 

Lemire et al. 
(2001) 

UO2
2+ -952.551 ± 1.747 -1019.000 ± 1.500 -98.200 ± 3.000 

Grenthe et al. 
(1992) 

 

(1) Internally calculated 

 





KIT – The Research University in the Helmholtz Association

INE Scientific Working Documents

ISSN 2701-262X

www.kit.edu


	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite
	21xxxx_No-04_RÜCKSEITE_xxx_finale allgemeine Version, mit ISSN.pdf
	Foliennummer 1




